Object

Title: On the distribution of primitive roots that are $(k,r) $-integers

Publication Details:

Established in 2008

Journal or Publication Title:

Armenian Journal of Mathematics=Հայկական մաթեմատիկական հանդես

Date of publication:

2019

Volume:

11

Number:

12

ISSN:

1829-1163

Official URL:


Contributor(s):

Գլխ. խմբ.՝ Անրի Ներսեսյան ; Պատ. խմբ.՝ Լինդա Խաչատրյան ; Խմբ. տեղակալ՝ Ռաֆայել Բարխուդարյան

Coverage:

1-12

Abstract:

Let $k$ and $r$ be fixed integers with $1 < r < k$. A positive integer is called $r$-free if it is not divisible by the $r^{th}$ power of any prime. A positive integer $n$ is called a $(k,r)$-integer if $n$ is written in the form $a^kb$ where $b$ is an $r$-free integer. Let $p$ be an odd prime and let $x > 1$ be a real number. In this paper an asymptotic formula for the number of $(k,r)$-integers which are primitive roots modulo $p$ and do not exceed $x$ is obtained.

Publisher:

National Academy of Sciences of Armenia

Date created:

2019-12-26

Format:

pdf

Identifier:

oai:arar.sci.am:13323

General note:

Electronic Open Access Publication of the National Academy of Sciences of Armenia

Digitization:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Location of original object:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Object collections:

Last modified:

Apr 19, 2024

In our library since:

Feb 12, 2020

Number of object content hits:

21

All available object's versions:

https://arar.sci.am/publication/15076

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects

Similar

This page uses 'cookies'. More information