Publication Details:
Journal or Publication Title:
Armenian Journal of Mathematics=Հայկական մաթեմատիկական հանդես
Date of publication:
Volume:
Number:
ISSN:
Official URL:
Title:
On the distribution of primitive roots that are $(k,r) $-integers
Creator:
Teerapat Srichan ; Tangsupphathawat Pinthira
Contributor(s):
Գլխ. խմբ.՝ Անրի Ներսեսյան ; Պատ. խմբ.՝ Լինդա Խաչատրյան ; Խմբ. տեղակալ՝ Ռաֆայել Բարխուդարյան
Subject:
Uncontrolled Keywords:
Coverage:
Abstract:
Let $k$ and $r$ be fixed integers with $1 < r < k$. A positive integer is called $r$-free if it is not divisible by the $r^{th}$ power of any prime. A positive integer $n$ is called a $(k,r)$-integer if $n$ is written in the form $a^kb$ where $b$ is an $r$-free integer. Let $p$ be an odd prime and let $x > 1$ be a real number. In this paper an asymptotic formula for the number of $(k,r)$-integers which are primitive roots modulo $p$ and do not exceed $x$ is obtained.
Publisher:
National Academy of Sciences of Armenia
Date created:
Type:
Format:
General note:
Electronic Open Access Publication of the National Academy of Sciences of Armenia
Digitization:
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան