Armenian Journal of Mathematics=Հայկական մաթեմատիկական հանդես
Գլխ. խմբ.՝ Անրի Ներսեսյան ; Պատ. խմբ.՝ Լինդա Խաչատրյան ; Խմբ. տեղակալ՝ Ռաֆայել Բարխուդարյան
Ultimately aiming to estimate Dirichlet polynomials, a representation problem for special biorthogonal systems of exponentials is explored in $L^2(0,a)$. If $a=+\infty$, a method of construction of such systems through suitable Blaschke products is known, but the method ceases to operate when $a$ is finite. It turns out that the Blaschke product cannot be even adjusted to maintain the old method for the new situation. The biorthogonal system is then represented by a single determinant of a modified Gram matrix of the original system. Bernstein-type inequalities for Dirichlet polynomials and their higher order derivatives are established. The best constants and extremal polynomials are obtained in terms of the Gram matrix.
National Academy of Sciences of Armenia
oai:arar.sci.am:13326
Electronic Open Access Publication of the National Academy of Sciences of Armenia
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան
Apr 19, 2024
Feb 12, 2020
72
https://arar.sci.am/publication/15082
Edition name | Date |
---|---|
On Biorthogonalization of a Dirichlet System Over a Finite Interval | Apr 19, 2024 |