Object

Title: Data-Driven Education In University Physics: A Comprehensive Analysis Of Learning Analytics Dashboards And Ai Tutoring

Ստեղծողը:

Asatryan, Samvel ; Safaryan, Naira

Տեսակ:

Հոդված

Ամսագրի կամ հրապարակման վերնագիր:

Մանկավարժության և հոգեբանության հիմնախնդիրներ=Проблемы педагогики и психологии= Main Issues of Pedagogy and Psychology

Հրապարակման ամսաթիվ:

2025

Հատոր:

12

Համար:

1

ISSN:

1829-1295 ; e-2953-7878

Պաշտոնական URL:


Համատեղ հեղինակները:

Խաչատուր Աբովյանի անվան հայկական պետական մանկավարժական համալսարան

Ծածկույթ:

108-145

Ամփոփում:

This article presents a comprehensive analysis of data-driven learning technologies—specifically Learning Analytics (LA) dashboards and Artificial Intelligence (AI) tutoring systems—in undergraduate physics education. Emphasizing the importance of pedagogical integration and sociological context, the study explores how these tools influence learning outcomes, student engagement, and equity. Learning Analytics dashboards are shown to support engagement and self-regulation, particularly when integrated with active learning pedagogies. However, their direct impact on academic achievement remains inconsistent, with effectiveness hinging on design and implementation. AI tutoring systems, including cognitive, dialogue-based, and generative models (such as RAG-based LLMs), display greater promise in enhancing conceptual understanding, problem-solving skills, and personalization. Their success depends not only on technological capability but also on the alignment with learner needs, faculty acceptance, and social equity. The study employs a triangulated methodology combining international case studies, sociological theory (TAM, ANT, Bourdieu), and synthesized survey data to assess user perceptions. It identifies key barriers, such as technological fluency gaps, digital divides, and ethical concerns around data privacy, algorithmic bias, and over-reliance on automation. A focused lens on Armenia’s context underscores infrastructural and pedagogical challenges limiting adoption. The article concludes with a critical synthesis: data-driven tools can significantly enhance physics education but are not panaceas. Their success depends on context-sensitive pedagogical integration, faculty and student readiness, and ethical design. Recommendations emphasize hybrid human-AI models, explainable AI, and equity-first deployment strategies.

Հրատարակության վայրը:


Երևան

Հրատարակիչ:

Զանգակ հրատ.

Ձևաչափ:

pdf

Նույնացուցիչ:

oai:arar.sci.am:402728

Object collections:

Last modified:

Jul 17, 2025

In our library since:

Jul 17, 2025

Number of object content hits:

1

All available object's versions:

https://arar.sci.am/publication/434976

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

This page uses 'cookies'. More information