Object

Title: On Longest Cycles in 2-connected Graphs

Journal or Publication Title:

Математические вопросы кибернетики и вычислительной техники=Կիբեռնետիկայի և հաշվողական տեխնիկայի մաթեմատիկական հարցեր=Mathematical problems of computer science

Date of publication:

2017

Volume:

47

ISSN:

0131-4645

Additional Information:

Քուլաքզյան Մ., Նիկողոսյան Ժ., Кулакзян М., Никогосян Ж.

Other title:

2-կապակցված գրաֆների ամենաերկար ցիկլերի մասին; О длиннейших циклах 2-связных графов

Coverage:

30-36

Abstract:

For a graph G, n denotes the order (the number of vertices) of G, c the order of a longest cycle in G (called circumference), p the order of a longest path and ± the minimum degree. In 1952, Dirac proved: (i) if G is a 2-connected graph, then c ¸ minfn; 2±g. The bound 2± in (i) was enlarged independently by Bondy (1971), Bermond (1976) and Linial (1976) in terms of ¾2 - the minimum degree sum of two nonadjacent vertices: (ii) if G is a 2-connected graph, then c ¸ minfn; ¾2g. In this paper two further extensions of (i) and (ii) are presented by incorporating p and the length of a vine on a longest path of G as new parameters along with n, ± and ¾2.

Publisher:

Изд-во НАН РА

Date created:

2017-03-02

Format:

pdf

Identifier:

oai:arar.sci.am:258907

Location of original object:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Object collections:

Last modified:

Dec 8, 2023

In our library since:

Jul 24, 2020

Number of object content hits:

14

All available object's versions:

https://arar.sci.am/publication/282039

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Edition name Date
On Longest Cycles in 2-connected Graphs Dec 8, 2023

This page uses 'cookies'. More information