Դարբինյան Ս., Կարապետյան Ի., Дарбинян С., Карапетян И.
Let D be a strongly connected directed graph of order n≥4. In [14] (J. of Graph Theory, Vol.16, No. 5, 51-59, 1992) Y. Manoussakis proved the following theorem:Suppose that D satisfies the following condition for every triple x, y, z of vertices such that x and y are nonadjacent: If there is no arc from x to z, then d(x)+d(y)+d-(x)+ d+(z)≥3n-2. If there is no arc from z to x, then d(x)+d(y)+d-(x)+d+(z)≥3n-2. Then D is Hamiltonian.
oai:arar.sci.am:258830
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան
Dec 8, 2023
Jul 24, 2020
16
https://arar.sci.am/publication/281952
Edition name | Date |
---|---|
On pre-Hamiltonian Cycles in Hamiltonian Digraphs | Dec 8, 2023 |
Samvel Kh. Darbinyan Iskandar A. Karapetyan
Samvel Kh. Darbinyan Iskandar A. Karapetyan
Samvel Kh. Darbinyan Iskandar A. Karapetyan