Object

Title: On a convergence of the Fourier-Pade approximation

Publication Details:

Established in 2008

Journal or Publication Title:

Armenian Journal of Mathematics=Հայկական մաթեմատիկական հանդես

Date of publication:

2013

Volume:

4

Number:

2

ISSN:

1829-1163

Official URL:


Contributor(s):

Գլխ. խմբ.՝ Անրի Ներսեսյան ; Պատ. խմբ.՝ Լինդա Խաչատրյան ; Խմբ. տեղակալ՝ Ռաֆայել Բարխուդարյան

Coverage:

49-79

Abstract:

We consider convergence acceleration of the truncated Fourier series by sequential application of polynomial and rational corrections. Polynomial corrections are performed along the ideas of the Krylov-Lanczos approximation. Rational corrections contain unknown parameters which determination is a crucial problem for realization of the rational approximations. We consider approach connected with the Fourier-Pade approximations. This rational-trigonometric-polynomial approximation we continue calling the Fourier-Pade approximation. We investigate its convergence for smooth functions in different frameworks and derive the exact constants of asymptotic errors. Detailed analysis and comparisons of different rational-trigonometric-polynomial approximations are performed and the convergence properties of the Fourier-Pade approximation are outlined. In particular, fast convergence of the Fourier-Pade approximation is observed in the regions away from the endpoints.

Publisher:

National Academy of Sciences of Armenia

Date created:

2013-03-07

Format:

pdf

Identifier:

oai:arar.sci.am:13254

General note:

Electronic Open Access Publication of the National Academy of Sciences of Armenia

Digitization:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Location of original object:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Object collections:

Last modified:

Apr 19, 2024

In our library since:

Feb 12, 2020

Number of object content hits:

19

All available object's versions:

https://arar.sci.am/publication/14968

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects

Similar

This page uses 'cookies'. More information