Publication Details:
«ՀՀ ԳԱԱ Տեղեկագիր: Մաթեմատիկա»-ն լույս է տեսնում 1966 թվականից՝ տարին 6 անգամ։
Journal or Publication Title:
Date of publication:
Volume:
Number:
ISSN:
Official URL:
Additional Information:
Title:
Группы Адяна-Лысенка и (U) свойство
Other title:
Adian-Lisenok Groups and (U) Condition / V. S. Atabekyan.
Creator:
Contributor(s):
Գլխավոր խմբ․՝ Մ․ Մ․ Ջրբաշյան (1966-1994) ; Ռ․ Վ․ Համբարձումյան (1994-2009) ; Ա․ Ա․ Սահակյան (2010-)
Subject:
Coverage:
Abstract:
Скажем, что группа G обладает свойством (U) относительно S, если существует такое число M = M (G), что для каждого порождающего множества P группы G найдется элемент t ∈ G, для которого имеет место неравенство m a x x ∈ s │t-lxt│ р ≤ M.. В работе доказывается, что известные группы Адяна-Лысенка обладают свойством (U). Вопрос о нахождении бесконечных групп со свойством (U) поставлен в совместной работе Д. Осина и Д. Сонкина. Показано также, что для каждого нечетного n > 1003 в многообразии групп, удовлетворяющих тождеству xn = 1, существует континуум неизоморфных (простых) групп со свойством (U). A group G possesses the property (U) with respect to S if there exists a number M = M(G) such that for each generating set P of the group G there exists an element t ∈ G for which m a x x ∈ s │t-lxt│ р ≤ M.. It is proved that the well-known Adian-Lisenok groups possess the property (U). In connection with the problem on finding infinite groups with the property (U), which is stated in a joint unpublished work by D. Osin and D. Sonkin, it is shown that for any odd n > 1003 there is a continuum set of non-isomorphic simple groups with the property (U) in the variety of groups satisfying the identity xn = 1
Place of publishing:
Երևան
Publisher:
Date created:
Type:
Format:
Call number:
Digitization:
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան