Օբյեկտ

Վերնագիր: Crop Disease Detection Using Mobile NetV3-Small Convolutional Neural Networks (CNNs) to Support Armenian Agriculture

Հրապարակման մանրամասներ:

Պարբերականը հիմնադրվել է 2003 թ. փետրվարի 26-ին՝ Հայկական գյուղատնտեսական ակադեմիայի գիտական խորհրդի որոշմամբ, սկզբում՝ «Հայկական գյուղատնտեսական ակադեմիայի տեղեկագիր», այնուհետև՝ «Հայաստանի պետական ագրարային համալսարանի տեղեկագիր», «Հայաստանի ազգային ագրարային համալսարանի տեղեկագիր» վերնագրերով: «Հայաստանի ազգային ագրարային համալսարանի տեղեկագիր» գիտական պարբերականը ՀՀ ԿԳՄՍՆ Բարձրագույն որակավորման կոմիտեի կողմից ներառված է դոկտորական և թեկնածուական ատենախոսությունների արդյունքների ու դրույթների հրապարակման համար ընդունելի գիտական հանդեսների ցանկում: Պարբերականի նպատակը գիտահետազոտական աշխատանքների արդյունքների ներկայացման և լուսաբանման միջոցով ագրարային ոլորտի խնդիրներին ուղղված գիտական լուծումներ առաջադրելն է: Հիմք ընդունելով պարբերականի մասնագիտական ուղղվածությունը, նպատակը և վերնագիրը բովանդակությանն առավել համապատասխանեցնելու անհրաժեշտությունը՝ 2019 թ. մայիսի 16-ին համալսարանի գիտական խորհուրդը որոշել է այն վերանվանել «Ագրոգիտություն և տեխնոլոգիա», որը «Հայաստանի ազգային ագրարային համալսարանի տեղեկագիր» պարբերականի իրավահաջորդն է: «Ագրոգիտություն և տեխնոլոգիա» պարբերականը հրատարակվում է տարվա ընթացքում չորս անգամ՝ անգլերեն առանձին, հայերեն և ռուսերեն միասնական համարներով, յուրաքանչյուր եռամսյակը մեկ:

Ամսագրի կամ հրապարակման վերնագիր:

Ագրոգիտություն և տեխնոլոգիա=Agriscience and Technology= Агронаука и технология

Հրապարակման ամսաթիվ:

2025

Հատոր:

2/90

ISSN:

2579-2822

Պաշտոնական URL:


Համատեղ հեղինակները:

Հայաստանի ազգային ագրարային համալսարան

Աջակից(ներ):

Գլխավոր խմբագիր՝ Հ. Ս. Ծպնեցյան

Ծածկույթ:

105-111

Ամփոփում:

The agricultural sector of Armenia faces many problems, such as low productivity, small landholdings, limited technological machinery, reliance on low-value crops, and inadequate expertise. This article uses Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs) based on MobileNetV3-Small architecture, to improve crop disease detection. The model was trained and validated using fruit and berry colored leaf images from the PlantVillage dataset. The final model achieved an accuracy of 99.25% and a macro F1-score of 0.9891 across 13 plant disease and health categories, which indicates the model’s strong potential for accurate crop disease detection.

Հրատարակության վայրը:

Երևան

Հրատարակիչ:

ՀԱԱՀ հիմնադրամ

Ձևաչափ:

pdf

Նույնացուցիչ:

oai:arar.sci.am:426253

Թվայնացում:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Օբյեկտի հավաքածուներ:

Վերջին անգամ ձևափոխված:

Jan 30, 2026

Մեր գրադարանում է սկսած:

Jan 30, 2026

Օբյեկտի բովանդակության հարվածների քանակ:

4

Օբյեկտի բոլոր հասանելի տարբերակները:

https://arar.sci.am/publication/458912

Ցույց տուր նկարագրությունը RDF ձևաչափով:

RDF

Ցույց տուր նկարագրությունը OAI-PMH ձևաչափով։

OAI-PMH

Օբյեկտի տեսակ՝

Նման

Այս էջը օգտագործում է 'cookie-ներ'։ Ավելի տեղեկատվություն