սեղմիր այստեղ կապին հետևելու համար
Diophantine equations are multivariate equations, usually polynomial, in which only integer solutions are admitted. A brute force method for finding solutions would be to systematically substitute possible integer values for the unknown variables and check for equality. Grover’s algorithm is a quantum search algorithm which can find marked indices in a list very efficiently. By treating the indices as the integer variables in the Diophantine equation, Grover’s algorithm can be used to find solutions in a brute force way more efficiently than classical methods. We present a hand-coded example for the simplest possible Diophantine equation, and results for a more complicated, but still simulable, equation encoded with a high-level quantum language.
oai:arar.sci.am:405371
ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան
Aug 7, 2025
Aug 7, 2025
0
https://arar.sci.am/publication/437402
Հրատարակության անուն | Ամսաթիվ |
---|---|
Tatli, Lara, A Quantum Diophantine Equation Solution Finder | Aug 7, 2025 |