Object

Title: On Nagy-Foias Characteristic Function in Extensions Theory of Hermitian Operators

Publication Details:

Established in 2008

Journal or Publication Title:

Armenian Journal of Mathematics=Հայկական մաթեմատիկական հանդես

Date of publication:

2016

Volume:

8

Number:

1

ISSN:

1829-1163

Official URL:


Contributor(s):

Գլխ. խմբ.՝ Անրի Ներսեսյան ; Պատ. խմբ.՝ Լինդա Խաչատրյան ; Խմբ. տեղակալ՝ Ռաֆայել Բարխուդարյան

Coverage:

1-24

Abstract:

For a densely defined in a Hilbert space closed Hermitian operator with infinite defect numbers its maximal extensions are discussed. The Nagy-Foias characteristic function of an arbitrary maximal dissipative extension is derived. Mutually complementary classes of such extensions, referred to as inherited and acquired are introduced, and the peculiarity of characteristic function, as determining the class of extensions it corresponds to, is noted. In the setting of Calkin's abstract boundary conditions theory abstract analogs of Nagy-Foias and Weyl functions are presented in similar manner, as operator functions involved in boundary operators, describing the class of inherited extensions. Existence and analyticity of these functions are proved.

Publisher:

National Academy of Sciences of Armenia

Date created:

2016-06-07

Format:

pdf

Identifier:

oai:arar.sci.am:13294

General note:

Electronic Open Access Publication of the National Academy of Sciences of Armenia

Digitization:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Location of original object:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Object collections:

Last modified:

Apr 19, 2024

In our library since:

Feb 12, 2020

Number of object content hits:

11

All available object's versions:

https://arar.sci.am/publication/15024

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects

Similar

This page uses 'cookies'. More information