Օբյեկտ

Վերնագիր: Deep Learning Approaches for Voice Emotion Recognition Using Sentiment-Arousal Space

Journal or Publication Title:

Математические вопросы кибернетики и вычислительной техники=Կիբեռնետիկայի և հաշվողական տեխնիկայի մաթեմատիկական հարցեր=Mathematical problems of computer science

Date of publication:

2021

Volume:

56

ISSN:

2579-2784 ; e-2538-2788

Additional Information:

Թումանյան Նարեկ Տ․, Туманян Нарек Т.

Other title:

Խորը ուսուցման մեթոդներ ձայնագրությունների էմոցիայի գնահատման համար օգտագործելով տրամադրական կոորդինատային համակարգ ; Глубокое обучение для распознавани яэмоций взаписях голоса с использование мвалентно-возбужденного пространства

Abstract:

In this paper, we present deep learning-based approaches for the task of emotionrecognition in voice recordings. A key component of the methods is the representationof emotion categories in a sentiment-arousal space and the usage of this space repre-sentation in the supervision signal. Our methods use wavelet and cepstral features asefficient data representations of audio signals. Convolutional Neural Network (CNN)and Long Short Term Memory Network (LSTM) architectures were used in recognitiontasks, depending on whether the audio representation was treated as a spatial signal oras a temporal signal. Various recognition approaches were used, and the results were analyzed․

Publisher:

Изд-во НАН РА

Format:

pdf

Extent:

էջ 35-47

Identifier:

oai:arar.sci.am:323540

Language:

en

Location of original object:

ՀՀ ԳԱԱ Հիմնարար գիտական գրադարան

Օբյեկտի հավաքածուներ:

Վերջին անգամ ձևափոխված:

Dec 8, 2023

Մեր գրադարանում է սկսած:

Jul 15, 2022

Օբյեկտի բովանդակության հարվածների քանակ:

19

Օբյեկտի բոլոր հասանելի տարբերակները:

https://arar.sci.am/publication/351182

Ցույց տուր նկարագրությունը RDF ձևաչափով:

RDF

Ցույց տուր նկարագրությունը OAI-PMH ձևաչափով։

OAI-PMH

Այս էջը օգտագործում է 'cookie-ներ'։ Ավելի տեղեկատվություն