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1. Introduction. Let E = {0,1}. Consider Cartesian degree E™, which is
known as the set of vertexes of n-dimensional unit cube. For x,y € E™ denote
by d(x,y) the Hamming distance between vectors x and y. For x € E™ denote
by SP(x) the sphere of radius r, centred at x ie.
St(x) ={y/y € E™",d(x,y) <} and by OF(x) denote the shell of radius r, of
centre x ie. 0/'(x) ={y/y € E",d(x,y) = r}. We will denote by car(x) the
carrier of vector x = (xy, ..., x,) then car(x) = {i/x; = 1,i € {1, ...,n}}. Denote
by w(x) the weight of vector x i.e. w(x) = X, x;. Now let we have a file
F € E™ and a query element x € E™. Let us consider the problem of finding the
set of all “nearest neighbors” of F to x. More precisely it is required to find the
set b(x,F) ={y € F/d(x,y) = min,er d(x,2)}. To propose an algorithm for
solving the problem of nearest neighbors in applied level, hash coding schemes
are considered [1, 2]. A brief description of such schemes is brought below:
Hash function is defined as a function h:E™ - V where V = {v,,...,vy} is a
finit set of N elements [1]. In some cases it is possible that u # v,u,v € E™ but
h(u) = h(v). Such situations are called collisions. The problem of collisions is
solved by the technique called “chaining” [1, 2]. The method is to keep N
distinct linked lists L;(or buckets) one for each possible value of hash function.
Denote by B; the set {x € E"/h(x) = v;}. In the i-th list L; are stored those
vectors belonging to F which have the same hash value, ie.
L; = {x € F/h(x) = v;} or L; = B;NF. Hash coding scheme is called balanced if
|B;| = 2"/N.

2. Preliminaries. 2.1 Elias algorithm. The Elias algorithm [2] considers
blocks B; ordering them by their distances at vector x. Mention that we must



have an efficient method to find all blocks B; , B;,, ..., Bjs(}')
from x if such blocks exist. After the step of ordering the algorithm examines
lists L;,,Lj,, ...,Ljs(].) one after the other by increase of j. Let the best match
distance is denoted by 6. Due to F # @ initialisation of § will happen on some
stape. Now, if the current values obey 6 < j the algorithm stops the work. All
blocks with higher distances than & at x do not need to be examined. In the

reminder case § = j, examining nonempty list L;, algorithm can change the

located at distance j

best match distance §, also refreshing the current best match set, or the § will
remain unchanged and the current best match set will be updated.

Elias Algorithm: comment: n is the word length, N is the number of blocks
Input x, F, comment: F# @

Integer § = o, comment: the current best match distance

Set S= @, comment: S-is the current set of vectors of F located at distance &

from x
integer j=-1,
while(j < §)
{
j+,
if(s(j) # 0)
for(integer i = 0; i <s(j); i ++)
{
if(L;, # @) comment: start examine the list L;
if (0 <d(x, L)
S=SuU(0}(x)NL;) comment: §is unchanged
else
{
S =05(x) NLj, comment: § is changed
8 =d(x, L),
}
}
}

return S, comment: S = b(x,F),§ = d(x, F)

By the complexity of algorithm we mean the average number of examined lists
over all files and queries, supposing that each vector z € E™ can independently
appear in F with the same probability p.

2.2 Error-correcting codes. We call a code a nonempty subset C of E™ [3].
Usually for codes some other prescribed properties obeyed (linearity, cyclicity,
etc). The code C will be called linear if C is a linear subspase of E™. Due to the
binary nature of spaces considered C is linear when: Vcy,c, € C = ¢y + ¢, €C,
mod2 summation is applied. Denote by d¢ the minimum distance of the code C
ie. d¢ = minc,c,ec d(cy,¢;). The packing radius [3, 4] of C is called the

c1#C;
following nonnegative integer: 1. = [(d¢ — 1)/2]. Denote by R the covering



radius [3] of the code C, i.e. Rc = max,cgn mingec d(x,c). In the sequel, when
it doesn’t make a confusion we use notations d,r and R instead of d., 7 and R
respectively. We say that we have an [n, k, d]R code C if the code C is linear, has
dimension k, length n, minimum distance d and covering radius R. When the
code is nonlinear (or it is not known it being nonlinear) we use the notation
(n,M,d)R instead, where M = |C|. Denote by (x,y) the scalar product of
vectors X = (Xq,..,xp) and y = (Vq, .., Vn), ie. (xX,V)=x1y1+ -+ XnVn
where addition is taken by modulo 2. For x € E™ the coset of linear code C is
called theset x + C = {x + ¢/c € C}. As it is known [3] two different cosets do
not intersect, and their union covers the space E". We denote by G the
generator matrix of the linear code C[n, k], whith rows forming a basis of
code C. Let us denote by H( the parity check matrix of linear code C. Recall
that Hc is (n — k) X k matrix and for H; holds relation ¢ € C & H;cT = 0. The
nonnegative integers A§,AS, ..., AS, where AY = |{c € C/w(c) = i}|are called
weight spectra of code C. Denote by Kj'(i) the Kravchouk polynomial of
degree j 3, 4] i.e.

76 =311 () ) v () - 22t

3. Perfect Codes and some Generalizations. For balanced hash coding
schemes it is proposed that the Elias algorithm may be optimal when the blocks
B; are isoperimetric sets [2, 5] (in simple case spheres). In connectin to it we
consider coverings of unit cube by non intersecting spheres. Such coverings
can be obtained via perfect codes. When the geometrical interpretation of
spherical covers is considered in the models of search of similarities, besides the
perfect codes their other possible extensions can be considered and applied,
such as nearly perfect codes, strongly uniformly packed codes, quasi perfect
codes or coverings by spheres with different radii [4], etc. We brought a brief
description of such coverings.

A code C will be called perfect [3-4], if rc = R¢. It is known [3, 6] that in
binary space nontrivial perfect codes can have only the following two
parameter sets.

D (2™ -1,,22"m"1 3)1,

(I) (23,22,7)3,

here (I) corresponds to the parameters of Hemming codes and (II) refers the
case of Golay codes.

Let us consider some generalizations of perfect codes. Let we have a code C,
with minimum distance d represented as 2t+ 1 or 2t+ 2 (for odd and even
d correspondigly). And we suppose that the covering radius R < t + 1. Let us
denote D = {x/d(x,C) >t}. For x € E" denote by Ai(x) the number of
codewords of C located at distance i from x. For x € D denote a(x) = A.(x) +
A¢4+1(x).Note that A¢(x) = 1 or 0. Having d¢ = 2t + 1 and R¢ < t+ 1, we may

reduce that a(x) < [%11] Denote by a the average value of a(x) for all x € D.



ZceClO{l(C)UO{l+1(C)| — Icl ((Itl)+(t£—11))
an-leiziza(l) 2-lai(h)

perfect [3, 4] if a(x) achieves the possible maximum value [%] for all x € D,

Then a =

The code C will be called nearly

ie. for nearly perfect codes it takes place the following equality:
n n
[C < 1 (n) + W) = 2". The following parameter sets of nearly perfect

! [ ]
codes are known:
(L) (2™ — 2,22"-m=2,3)2;
(IV)(22m — 1,22""~4m 5)3
Here (III) corresponds to the parameters of shortened Hemming codes and (IV)
corresponds to parameters of punctured Preparata codes. In [7] proved that
nearly perfect codes can have only the one of mentioned parameter sets.
The code C will be called strongly uniformly packed if a(x) = a for all x € D [4].
The parameters of strongly uniformly packed codes are known too [4].
The code C will be called quasi-perfect if R =r+ 1 [3, 4]. Many families of
quasi perfect codes are known for the covering radius < 4 [4, 8-13] but the
general problem of existence of quasi-perfect codes by the given parameters
isn’t completely solved yet [8]. Also the nearly perfect codes appear as a special
class of quasi-perfect codes.

Let i=1 and Ry,...,R; are integers, C = U}=1 C;. Code C will be called
perfect i radius code if the spheres with radii Ry, ..., R; respectively centered at
points of code sets Cj, ..., C; do not intersect and their union covers the whole
space [4]. These structures are another candidate that we may apply in model of
best match search below, but there are not known exhausting results also about
existence of such codes [4].

4. The Complexity of the Algorithm. Suppose we have an [n, k] code C with
covering radius R and C = {cl, Cy, ...,Czk}. We define a hash function h: E™ —
C, associated to the code C in the following way:

he(x) = {c;/ d(x, ¢;) = mincec{d(x,c)}}. (1
As it follows from (1) he(x) could be multivalued function because the blocks
B; are spheres of radius R, and they can intersect (recall that
B; ={x € E"/h(x) = ¢}, i €{1,..,2%}). When the code C is perfect the
mentioned blocks do not intersect and their union covers the unit cube. The
formula below for complexity of algorithm is brought for the case
corresponding to Hamming code. We also consider hash functions associated to
codes in some sense “near” to perfect codes. Such property have also the so
called quasi-perfect codes [3, 4]. Indeed the algorithm is proposed for balanced
hash coding schemes where different blocks B; do not intersect, but we will also
consider the algorithm for the case of intersecting blocks. In this case when
blocks intersect we create the list in a similar way to the basic case and then
these lists are also intersecting. Repeated element bring some redundancy (in
terms of memory). The formal expression of complexity of algorithm is then



brought for the particular case of extended Hamming code. To write a formula
of complexity of the algorithm, for x € E™ let us consider the following table:

P1 P2 p,2n | probability
X

Fo | Fo | | Fpn subset
X X X

By | a11 | ap a .0

Blocks | B, | a3 | a3 a’z(zzn

X X X

Bk | gy | Agxy A)kg2"

Fy,Fp, .. F on are all subsets of vertexes of unit cube and each F; could be
generated with the corresponding probability p;. We will use the values a;;

putting them in the cells corresponding to block B; and subset F;, where
x _ {1 if B;is considered in case of set F; and vertex x,

7710 otherwise.
As we mentioned in section 2.1, the complexity of algorithm will be

represented as
a(hc) = 57 Swern Tasizak Zyejezen P45
Let us denote &, (B;) = 2151'522” p;ja;j- As we can see @y (B;) is the probability
that the block B; will be considered by the algorithm when the vector x is
requested. Then
a(he) = 5 [Zxepn Dysicor Pe(Bo)],
It is easy to understand that for a fixed query x the block B; will be examined if
the sphere Sg, B,)—1 does not contain any vector belonging to F. In that case all
blocks B; such that d(x, B;) < d(x,B;) — 1, will be examined. Let j vary over all
possible distances between vector x and blocks B;. Denote by T, (j) the number
of blocks located at distance < j from vector x, then
a(he) = o Tepn ozjen Te(DV()- @
where V(j) denotes the probability that the nearest vector in F is located at
distance j from x. Recall that [2]
V() =1-(1- (Mye1 — ;=)
J=0-0-pY)HA~-p) :
As d(x,C;) =w(x + ¢;), then the number of vectors located at distance i is
equal to A¥*¢. The sphere with centre c; and radius R will be located in a
distance < j from vector x if and only if d(x, ¢;) < j + R. Therefore
T() = Til5 A7 3)

We consider that A¥*¢ = 0 when i > n.

5. Case of Hamming code and extended Hamming code. Denote by #,, the
Hamming code of length n = 2™ — 1. As we know [3], Hy, is [2™ —1,2™ —
m — 1,3]1 perfect code. The parity check matrix of #,, is the following:



0 0 - 1

H}[m = 0 1 ., 1 > (4)
10 - 1

The code Hy, has two types of cosets: the code Hy, itself and e; + Hy,, where

supp(e;) = {i}, i =1,...,n. Coset weight spectra in these cases are respectively

A = (K0 + 2™ - DKIE™), ()
e+ 2m =1 n(oym— (6)
e ()]

From (2),(3),(5) and (6) follows:
Proposition 1. The complexity of algorithm for the hash function defined
by 2™ —-1,2m-m -1 3]1 Hamming code H,, is:
a(hs,,) = 5 Zosjszm-1 VD (ZIL5 (4] + @™ — D ATH)).
Let us consider the extended Hamming code, which we denote by Hy,.It is
known [3], that F, is [2™,2™ —m — 1,4]2 quasi-perfect code, and its parity
check matrix is:

1 11 - 1
0O 0 0 - 1
Hym = & & &
o 01 - 1
o1 0 1
It could be obtained, that the code has three types of cosets

@) Foms

(b) e; + Hm, where car(e;) = {i}, i € {1, ...,n},

(c) g; + Hpy, where car(g;) = {1,i},i € {2,...,n}.
Coset weight spectra in these cases are respectively

T 1
A =~ (KP(O) + @™ - 2KPE™ ) + K 2M) ®
1w |
T Ny
Agi+ﬁr\n = 213+1 <(2]m> (1 + (_1)j) - 2K]-2m(2m_1)) 10)

~1 vectors and

Keeping in mind this and the fact that each coset contains 22" ~™
the number of cosets of first, second and third types is equal to 1, 2™ and
2™ — 1 respectively from (2) and (3) we get:

Proposition 2. For the hash function defined by [2™,2™ —m — 1,4]2

extended Hamming code F{,, the complexity of algorithm is:

a(hsz,) = Tosjeam VO) (15 (G AT + 5 A5 4 2204870 )) (1)
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Complexity of Elias Algorithm for Hash Functions
Based on Hamming and Extended Hamming Codes

The procedure of finding the set of all “nearest neighbors” in a set, known as the
Elias algorithm is addressed. In connection to it the hash coding schemes associated
with the n-dimensional unit cube coverings by non-intersecting spheres of the same
radius is considered. Such coverings, in particular, can be obtained via perfect codes.
We get a formula presentation for complexity of the search algorithm in case of
Hamming codes. As such coverings are possible in very simple cases and we consider
coverings by intersecting spheres of the same radius. These can be obtained via quasi-
perfect codes. A formula of complexity of algorithm for extended Hamming codes is
obtained-as.

L. Z. Gujuiyul, Z. . Twinjul

Ejkwuh ungnphpuh pupnmipiniiip Zkddhiigh b plinjuyigus Zkddhugh
nptpny vwhdwbgws hwo-pniuljghwntph hwdwnp

Nuunufbwuppdwt wpwplut  puqUmput npdus  Hhdkinh  «udkiudnn
hwplwuubph» qnubint huynuh Ejkwuh wignphpedu B Fpu hbn juwus nhinwpldmd Eu
hwp-Ynpufnpuwl ubdwibp wunghuglus n-swthwih dpwnp unpubwpygh’ dhlibmga
ownwynny shwnynn qunkpny swsynypubph htwn: Unuyhuh swsynypubp uvnwugynud ki
Juwuwpuy Ynpbkph dhongny: Rhpdwé b npnidwt wgnphpuh pupnnipjut putwdl
Zhddhugh Ynnh nphypnud: Lwih np Wwlwb Swdlnypubp qomipnit bkt kqulh
nhyptpnud, nhnwupymd Eup twb sSwsynypubp dhtunyu swpwynny hwwnynn qunkph
wnbkupny: Uuyhuh swslnyputp dwutwnpuybu uvnugymd ku pquqhuwnwupu) Ynnkph
dhongny: Rtpjwé b wignphpuh puppmpjut pwbwdl puguyudws Zddhugh Ynnh
nhwypnud:

JI. A. Acnausu, A. D. JaHoau
CrnoxxHOCTS airopuTMa Jjieaca A Xem-GyHKIUU oIpe/ieTeHHbIX
KoZaMu XeMMHHTa U PacIIMPEeHHBIMH KOlaMi XeMMHHTa

V3BecTeH aIroput™M HaxXOXIEHWS BCeX «OIMDKANUINX cocelei» K NaHHOM TOYKe W3
JAaHHOTO MHOXKeCTBa. B cBasu ¢ atum PpaccMaTpHUBaIOTCA CXEMBI XeNI-KOAMPOBaHUA,
ACCOIIPOBAHHBIE C ITOKPHITHUSAMK N-MEPHOrO eJIUHUYHOTO Ky0a C HellepeceKarol[uMU
IapaMy PaBHOTO pasuyca. Takue IMOKPBHITHS MOJIYYAIOTCSA C IIOMOIIBI0 COBEpPIIEHHBIX
KOZOB. HOCKO]II:KY TaKye IIOKPBITUA CYILIECTBYIOT B €IWHHUYHBIX CIIyYadXx, MBI
paccMaTpuBaeM IIOKPBITHS C IIE€PECEKAIOUIMHM LIapaMM PaBHOTO pazuyca. Takie
IIOKPBITHSA B YaCTHOCTHU IIOJy4aloTCA C IIOMOIIBIO KBA3MCOBEPIIEHHBIX KOJOB.
IIpuBenena dopmysna CIOXHOCTH QITOPUTMA JAJIA CIy4das PAcCIIMPeHHBIX KOZOB
XeMMuHra.
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