

УДК 621.378.325

ФИЗИКА

Р. Н. Гюзалян, Р. Б. Костанян, П. С. Погосян

Влияние резонансного поглощения на фазу лазерного излучения (Представлено чл.-корр. АН Армянской ССР М. Л. Тер-Микаеляном 1/ПІ 1973)

В работе приводятся результаты исследований изменения фазы сильной электромагнитной волны при взаимодействии с резонансной средой двухуровневых атомов. Рассматривается случай, когда длительность падающего излучения ΔT значительно больше времени по-

перечной релаксации T_n , и намного меньше времени жизни активных атомов τ , т. е $T_n \ll \Delta T \ll \tau$. При этом фаза излучения φ определяется из следующего уравнения (см. например (¹).

$$\frac{\partial\varphi}{\partial x} + \frac{1}{v}\frac{\partial\varphi}{\partial t} = -\frac{\partial}{2}\sigma\Delta(x,t). \tag{1}$$

где v—скорость излучения в среде, $v = \frac{2s}{\Gamma}$ —величина, показывающая во сколько раз расстройка между частотой падающего излучения и резонансной частотой активных атомов s больше полуширины атомной линин $\frac{\Gamma}{2}$, s — эффективное поперечное сечение вынужденных пе-

реходов между рабочими уровнями, ∆—плотность инверсной населенности, определяемая из хорошо известных уравнений баланса (^{2,3}).

Если значение Δ, найденное из уравнений баланса, подставить в (1), то его можно свести к квадратурам. Однако такое решение неудобное, поскольку для каждого конкретного случая необходимо произвести численное интегрирование. Рассмотрим некоторые частные случаи, при которых для φ получаются более простые яналитические выражения.

а) При отсутствии нерезонансных потерь в среде (3=0) имеем:

$$\varphi = \varphi_0 + \frac{\sigma}{2} \ln \left[1 + (e^{-\sigma \Delta_0 r} - 1) \cdot e^{-\sigma r} \right], \quad (2)$$

где 🗛 — значение фазы при x = 0, I_{вх} — интенсивность излучения

* Это условне экспериментально можно осуществить для твердотельных сред. Так, например, в рубине *Тл~10-12сек*, -3 · 10 - ³сек.

145

(число фотонов, проходящих, через единицу поверхности в единицу времени) на входе образца, Δ_0 —начальная перенаселенность.

б) При 25∫ Idt < 1 (линейный режим), для ? получаем извест--∞

ное выражение:

 $dt \ll \omega$,

$$\varphi = \varphi_0 - \frac{2}{2} \sigma \Delta_0 x.$$
 (3)

Таким образом, максимальное изменение фазы за счёт интенсивности падающего излучения достигает величины $\left|\frac{1}{2}\sigma\Delta_0 x\right|$. Для рубиновых кристаллов, если полагать $\sigma\Delta_0 = 0,4cM^{-1}$ и x = 8cM получим эначение $|\Delta \varphi_{m,ax}| = 1,6$ рад. в) В случае $2\sigma \int I dt \leq 1$ (вблизи режима насыщения), φ опре-

деляется из следующего выражения:

$$\varphi = \varphi_0 - \frac{\delta}{2} \sigma \Delta_0 x + \delta \ln\left(1 - b \frac{E_{BX}}{E_S}\right). \tag{4}$$

В (4) введены следующие обозначения:

$$b = \frac{1}{2} \left(1 + \frac{q_2}{q_1} \right) \frac{\sigma \Delta_0}{2(\sigma \Delta_0 - \beta)} \left[1 - e^{(\sigma \Delta_0 - \beta) x} \right], \quad E_{\text{BX}} = h \omega s I_{\text{BX}}, \quad E_s = \frac{h \omega s}{2\sigma},$$

q₁ и q₂ кратности вырождения энергетических уровней, h∞—энергия кванта, s—поперечное сечение пучка.

Найдём вклад изменения фазы излучения в коэффициент преломления среды. Записывая полную фазу в виде: $\Phi = \omega t - kx + \varphi(x,t)$ и учитывая. что $v_{\phi} = \frac{c}{n} = \frac{dx}{dt}$ получим:

$$v_{\phi} = \frac{\omega + \frac{d\varphi}{dt}}{k - \frac{d\varphi}{dx}}.$$
(5)

(6)

Принимая во внимание, что $k = \frac{\omega n_0}{c} = \frac{\omega}{v_0}$ (v_0 – скорость света в среде без активных атомов), и кроме того имеют место неравенства dz

$\frac{1}{dx} \ll k$ из (5) имеем:

 $n-n_0=\frac{c}{2\omega}\partial \circ \Delta.$

Оценки показывают, что максимальное изменение коэффициента преломления для рубиновых образцов порядка 10-⁶. 146 Зависимость коэффициента преломления от интенсивности может также сильно влиять на пространственное распределение излучения (самофокусировка, расфокусировка) (4

2. Эксперименты проводились на установке, блок-схема которой показана на рис. 1. В качестве источника излучения использован рубиновый генератор, работающий в режиме свободной генерации, с селек-

цней поперечных типов колебаний (мод). Общая длительность импульсов составляла 10⁻⁴ сек, что более чем на порядок короче времени жизни активных атомов. С целью повышения плотности энергии, излучение от генератора дополнительно усиливалось с помощью оптического квантового усилителя (ОКУ). В качестве исследуемого образца использовался рубиновый кристалл длинною 80 мм. Расстройка между частотой падающего излучения и резонансной частотой активных атомов изменялась при помощи термостата. Температуру в термостате можно было менять от компатной до — 30°С, что достаточно для

создания расстройки $\varepsilon = \frac{\Gamma}{2}$. Был

предусмотрен также блок автоматики (БА), работающий синхронно с генератором и позволяющий поддерживать постоянную температуру образца с точностью до 0,01 С.

Энергия падающих импульсов менялась с помощью нейтральных фильтров (НФ), и измерялась калориметром ($U\Im_1$). Калориметрами ($U\Im_2$) и ($U\Im_3$) измерялись энергии

на выходе образца. Поляронд П представлял из себя стопу стекол, расположенных под углом Брюстера. Сущность методики, примеияемой нами для измерения малых

147

изменений фазы излучения, заключается в следующем. На образец падает плоско поляризованное излучение, электрическое поле є которого составляет угол з с оптической осью z (рис. 2).

При малых энергиях входных импульсов, т. е., когда под действием излучения заселенности уровней активных атомов заметно не меняются, изменением угла а делаются равными интенсивности обыкновенной и необыкновенной воли на выходе. После этого оси эллипса поляризации выходного излучения составляют угол 45 С оптической осью образца z и элиптизность зависит только от разности между фазами обыкновенной и необыкновенной и необыкновенной воли. Этой разностью можно варьировать изменением температуры образца с изменением температуры образца показатели преломления для обыкновенной и необыкновенной и необыкновенной и лиции за ставаливая определенную температуру. $\frac{2\pi}{2}$ ($n_0 - n_e$)l можно менять, устанавливая определенную температуру.

Следует отметить, что изменение температуры не более чем на 1,5 С было достаточно для получения максимальной элиптичности.

Таким образом, можно было температурой компенсировать разность между фазами обыкновенной и необыкновенной волн, при этом заметно не меняя расстройку между частотой излучения генератора и резонансной частотой активных атомов образца, поскольку расстройка $\varepsilon = \frac{\Gamma}{2}$ соответствует температуре ~ 40°С (см. также (^{10, 11})). Если $\frac{2\pi}{L}$ ($n_0 - n_e$)l делать равным $2\pi n$, на выходе образца получим линейно

поляризованное излучение.

Ожидалось, что изменением температуры можно менять поляризацию выходного излучения, от линейной до круговой. Однако, как показывали наши исследования, в которых в качестве источника излучения использовался также He—Ne газовый лазер, поляризация выходного излучения в основном оставалась элиптической, причем элиптичность зависела от качества кристаллов. Поляризацию, близкую к линейной, удалось получить в тех кристаллах, с помощью которых получилась одночастотная генерация, методом, описанным в работе [¹²]. Дальнейшие измерения проводились на кристалле, с которым можно было получить элиптичность поляризации 1:30, что в пределах точпости наших измерений можно считать линейной. Далее, увеличение интенсивности входных импульсов, приводит к появлению дополийтельной разности между фазами обыкновенной и необыкновенной волн за счет нелинейного взаимодействия с резонансной средой, "

поляризация выходного излучения меняется. При этом известно, что с рубиновым кристаллом резонансно взаимодействует только обыкновенная волна (¹³). Возникающее изменение фазы можно найти следующим образом. Если изменением угла α приравнивать интенсивности обыкновенной и необыкновенной волн $I^0 = I^e$ (как это делалось в линейном случае), то получим:

148

$$\cos \psi = \frac{I_x - I_y}{I_x + I_y},$$
(7)

где ф разность между фазами обыкновенной и необыкновенной волн, I_x , I_y -интенсивности соответствующих осей элипса поляризации. Таким образом, измерением величин I_x и I_y можно определить изменение фазы излучения при нелинейном взаимодействии с резонансной средой.

Если на образец падает импульс излучения, то равенство $l^0 = l^e$ (l^0 , l^e —иптенсивности обыкновенной и необыкновенной воли соответственно) можно обеспечить только в определённый момент времени, поскольку форма обыкновенной волны меняется при прохождении через резонансную среду.

В экспериментах измерялись величины $E_x = h \otimes \int_{-\infty}^{\infty} dt \quad E_y = = h \otimes \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dt$ (энергия импульсов), предварительно приравнивая энергии обыкновенной и необыкновенной волн ($E^0 = E^e$). В этом случае элиптичность будег меняться в течение импульса, и имеет смысл говорить о некотором среднем значении 2. Если полагать, что при $E^0 = E^e$ (8)

то для созу получим:

$$\overline{\cos\psi} = \frac{E_x - E_y}{E_x + E_y}, \qquad (9)$$

149

где $\cos \psi = \frac{1}{E^{0}} \int_{0}^{\infty} \cos \psi dE^{0}$, т. е. измерением величии E_{x} и E_{y} , можно

получить среднее по энергии обыкновенной волны значение созу. —означает значение данной величины t

Можно показать, что в случае *E < Es*, приближение (8) вносит пебольшую ошибку в определение соз \$.

Проводились две серии измерений. В одной серии измерений изменением температуры (при малых энергиях выходных импульсов) $\frac{E_x}{E_y}$ приравнивалось единице, что соответствует начальной круговой поляризации и в другой серии $\frac{E_x}{E_y}$ делалось максимальным, что соответствует начальной линейной ноляризации. После этого измерялись E_x и E_y при разных энергиях входного импульса и чри разных расстройках между частогой излучения и резонансной частотой активных

атомов, предварительно приравняв E⁰ к E^e, для каждого значения энергии входных импульсов.

На рис. З изображен график зависимости созрот энергии входных импульсов $\left(b\frac{E_{nx}}{E_{x}}\right)$. Кривые расчетные, а точки соответствуют экспериментально полученным значенням. В верхней части графика приведены результаты, полученные при «=1 и начальной линейной поляризации, в нижней части при начальной круговой поляризации

$$i = 1, \frac{1}{2}, \frac{1}{4}$$

Хотя зависимость изменения фазы излучения от расстройки уже указывает резонансный характер процесса, нами был проведён также контрольный эксперимент, сущность которого заключается в следующем. Изменением температуры досгигалась такая разность фаз между обыкновенными и необыкновенными волнами. чтобы нагревание

Рис. 3.

приводило к увеличению отношения $\frac{E_y}{E_x}$, в то время как резонансное взаимодействие приводило к уменьшению этого отношения Авторы признательны чл.-корр. АН Армянской ССР М. Л. Тер-Микаеляну за постоянное внимание и ценные обсуждения.

Ниститут физических исследований Академии наук Армянской ССР

Ռ. Ն. ԴՅՈԻՉԱԼՅԱՆ, Ռ. Բ. ԿՈՍՏԱՆՅԱՆ, Պ. Ս. ՊՈՂՈՍՅԱՆ

Ռեզոնանսային կլանման ազդեցությունը լազեւային նառագայթման ֆազի վւա

Հոդվածում բերված է լաղերային Ճառագայինան ֆաղի վրա ռեգոնանսային կլանման ազդեցության վերաբերյալ տեսական և փորձնական ուսումնասիրության արդյունքները։

Բերված է Ճառագայինան ֆաղի և միջավայրի բեկման ցուցիչի մաքսիմալ փոփոխման դնահատումը։

Մշակված է փոքր ֆաղային փոփոխությունների չափման մեթող։

հերված է ճառագայնման ֆազի կախումը մուտքային իմպուլսի էներգիայից՝ ընկնող ձառագայննան ճաձախունյան և ակտիվ ատոմների ռեպոնանսային շաճախունյան միջև եղած տարբեր ապալարքների դեպքում։

Փորձնականորեն ստացված արդյունքները Տամեմատված են տեսական Տաշվարկների Տետ։

ЛИТЕРАТУРА — ЧРИЧИЪНЬ МЗИРЪ

1 А. Л. Микаэлян, М. Л. Тер-Микаелян, Ю. Г. Турков Оптические генера

торы на твердом теле, "Сов. радио", М., 1967. ² L. Frantz, Y. Nodvik, Appl. phys. 34, 2346 (1967). ³ В. И. Таланов, Изв. Вуз., Радиофизика, т. VII, №3(1964). ⁴ A. Gavan and P. L. Kelley, LEEE J. Guantum Electron 2, N9, 470. (1966). ⁵ D. Grishkovski, Phys. Rev. Letters vol. 24, N16, 866(1970). ⁶ O. M. Иванова, P. B. Хохлов, С. П. Чернов, "Тезисы докладов УІ Всесоюзной конференции по нелинейной оптике". Минск, 1972. ⁷ Н. А. Шальникова, И. А. Яковлев, Кристаллография. 1, 531 (1956). ⁸ Jeppesen JOSA 48, 629 (1958) ⁹ T. V. Housten, L. F. Johnson. Josa, 53, 1286(1963). ¹⁰ I. D. Abella, H. Z. Gummins, J. of applied physics vol. 32, N 6, 1177(1961). ¹¹ Games P. Wittke. J. of applied physics vol. 33, N7, 2333(1962). ¹² А. Л. Микаэлян. В. Г. Савельев, Ю. Г. Турков, Письма ЖЭТФ, 6, 6 (1967). ¹³ М. К. Бельский, Д. А. Мухамедова, ДАН СССР, 158, 2 (1964).

