XXX

1960

МАТЕМАТИКА

А. В. Чакмазян

Об одном преобразовании двойственно нормализованной поверхности

(Представлено академиком АН Армянской ССР А. Л. Шагиняном 3. I 1960)

Рассмотрим поверхность двух измерений X_2 , погруженную в евклидово E_4 . Допустим, что X_2 дополнена до гиперполосы так, что ее естественная нормализация будет одновременно и двойственной. Это значит, что поверхность X_2 дополнена до гиперполосы так, чтобы характеристика была перпендикулярна касательной плоскости X_2 .

Если обозначить через X нормальный вектор главной касательной гиперплоскости гиперполосы, а Y направляющий вектор характеристической прямой, то основные дифференциальные уравнения Γ_2 (1) будут иметь следующий вид:

$$\nabla_{j} \mathbf{r}_{i} = h_{ij} \mathbf{X} + k_{ij} \mathbf{Y} \qquad (a)$$

$$\mathbf{X}_{j} = -h_{j}^{k} \mathbf{r}_{k} \qquad (b)$$

$$\mathbf{Y}_{j} = -k_{j}^{k} \mathbf{r}_{k}, \qquad (c)$$

где $h_{ij} = -\partial_i r \partial_j X = X \nabla_j r_i$, $k_{ij} = -\partial_i r \partial_j$, Y = V Условия (1b) можно истолковать следующим образом. Если рассмотрим на гиперсфере S_3 двумерную поверхность Σ_2 , радиус-вектор точки которой $X = X(u^1, u^2)$, то ее касательная плоскости, определяемая векторами $\partial_i X$, параллельна касательной плоскости X_2 .

Говорят, что эти поверхности находятся в соответствии Петерсона (2). Такое отображение X_2 на поверхности Σ_2 назовем ее главным сферическим отображением.

Поверхность Σ определяется следующей системой дифференциальных уравнений

$$\nabla_{j} X_{(i)} = -\gamma_{ij} X + E_{ij} Y$$

$$Y_{j} = -E_{j}^{k} X_{k}$$

$$(2)$$

где

$$\gamma_{ij} = X_i X_j = h_i^k h_{jk}, \quad E_{ij} = -\partial_i X \partial_j Y = -h_i^k k_{jk} \tag{3}$$

есть первый и второй тензоры поверхности Σ_2 на гиперсфере S_3 , причем скобка вокруг индекса показывает, что ковариантное дифференцирование соответствует внугренней связности Σ_2 (3). Условия (3)

показывают, что главная сеть (4) X_2 соответствует сети линий кривизны Σ_2 .

1. В нормальной плоскости X_2 возьмем точку с постоянными координатами c_1 , c_2 относительно репера X, Y. Радиус-вектор этой точки

$$r^*(u^1, u^2) = r(u^1, u^2) + c_1 X(u^1, u^2) + c_2 Y(u^1, u^2)$$
(4)

определяет двумерную поверхность, которую мы обозначим через X_2^* . Дифференцируя (4) по u^i , получим

$$r_i = r_i + c_1 X_i + c_2 Y_i \tag{5}$$

или, вследствие (1)

$$\mathbf{r}_{i}^{*} = (\delta_{i}^{k} - c_{1}h_{i}^{k} - c_{2}k_{i}^{k})\mathbf{r}_{k}.$$
 (6)

Эти уравнения показывают, что в соответствующих точках поверхностей X_2 и X_2^* касательные плоскости параллельны.

Кроме того, поверхности X_2 и X_2 имеют общую нормальную плоскость. Для X_2^* получаем выражения

$$Xr^*=0$$
, $Yr^*_i=0$, $XY=0$, $\partial_i XY=0$,

а это показывает, что X^* допускает действенную нормализацию с теми же X, Y. Основные дифференциальные уравнения X^* будут иметь следующий вид:

$$abla_{i}r_{i}=h_{ij}X+k_{ij}Y,$$
 $X_{i}=-h_{i}^{*k}r_{k}^{*},$
 $Y_{i}=-k_{i}^{*k}r_{k}^{*},$

где

$$h_{ij} = -\partial_{i} r^{*} \partial_{ij} \quad X = h_{ij} - c_{1} h_{i}^{k} h_{jk} - c_{2} k_{i}^{k} h_{jk}$$

$$k_{ij}^{*} = -\partial_{i} r^{*} \partial_{i} \quad Y = k_{ij} - c_{1} h_{i}^{k} k_{jk} - c_{2} k_{i}^{k} k_{jk}.$$

Кроме того, поверхностям X_2 и X_1 соответствует один и тот же сферический образ Σ_2 . Мы можем сказать, что уравнение (4) дает переход от одной двойственно нормализованной X_2 к другой X_2^* с тем же сферическим отображением. Но так как главные сети как X_2 , так и X_2^* соответствуют одной и той же сети линий кривизны сферического образа Σ_2 , то главные сети X_2 и X_1^* соответствуют друг другу.

Вычислим метрической тензор X_2^* . Используя (6), получаем

$$g_{ij}^* = (\delta_i^k - c_1 h_i^k - c_2 k_i^k) (\delta_1^e - c_1 h_i^e - c_2 k_1^e) g_{ke}.$$

Если теперь главную сеть на X_2 примем координатную, то $h_{12}=k_{12}=g_{12}=0$; следовательно, на X_2^* получаем соответственно $h_{12}=k_{12}^*=g_{12}^*=0$. Из (6) следует

$$r_1^* = (1 - c_1 h_1^1 - c_2 h_1^1) r_1,$$

$$r_2^* = (1 - c_1 h_2^2 - c_2 h_2^2) r_2.$$

Эти условия показывают, что касательные к координатным линиям параллельны.

2. Предположим, что в уравнении (4) c_1 и c_2 зависят от параметров u^3 , u^4 . Тогда

$$r^* = r(u^1, u^2) + c_1(u^3, u^4) X(u^1, u^2) + c_2(u^3, u^4) Y(u^1, u^2).$$

Примем u^1 , u^2 , u^3 , u^4 за криволинейные координаты пространства E_4 . Дифференцируя, получаем

$$\frac{\partial \mathbf{r}^*}{\partial u^i} = \frac{\partial \mathbf{r}}{\partial u^i} + c_1 \frac{\partial \mathbf{X}}{\partial u^i} + c_2 \frac{\partial \mathbf{Y}}{\partial u^i} \quad (i = 1, 2)$$

$$\frac{\partial \mathbf{r}^*}{\partial u^3} = \frac{\partial c_1}{\partial u^3} \mathbf{X} + \frac{\partial c_2}{\partial u^3} \mathbf{Y}$$

$$\frac{\partial \mathbf{r}^*}{\partial u^4} = \frac{\partial c_1}{\partial u^4} \mathbf{X} + \frac{\partial c_2}{\partial u^4} \mathbf{Y}$$

Выберем u^3 , u^4 так, чтобы в нормальной плоскости они определяли ортогональную систему криволинейных координат. В этом случае будем иметь $\frac{\partial r^*}{\partial u^3} \frac{\partial r^*}{\partial u^4} = 0$.

Линейный элемент пространства E_4 выражается следующим образом

$$ds^2 = g_{ij}^* du^i du^j + g_{31}^* (du^3)^2 + g_{44}^* (du^4)^2,$$

где

$$g_{ij}^* = (\delta_i^k - c_1 h_i^k - c_2 k_i^k) (\delta_j^e - c_1 h_j^e - c_2 k_j^e) g_{ke}$$

$$g_{33}^* = \left(\frac{\partial c_1}{\partial u^3}\right)^2 + \left(\frac{\partial c_2}{\partial u^3}\right)^2$$

$$g_{44}^* = \left(\frac{\partial c_1}{\partial u^4}\right)^2 + \left(\frac{\partial c_2}{\partial u^4}\right)^2$$

$$(7)$$

Если, кроме того, главную сеть X_2 принять за координатную, то $h_{12}=k_{12}=g_{12}=0$, а из (7) получим $g_{12}^*=0$. Таким образом, линейный элемент пространства примет вид

$$ds^2 = g_{11}^* (du^1)^2 + g_{22}^* (du^2)^2 + g_{33}^* (du^3)^2 + g_{44}^* (du^4)^2.$$

Отсюда следует, что с каждой двойственно нормализованной поверхностью можно связать четырежды ортогональную систему координатных поверхностей в \mathcal{E}_4 .

3. Допустим, что в уравнении (4) c_1 , c_2 зависят от параметра u^3 . Тогда уравнение

$$r^* = r(u^1, u^2) + c_1(u^3) \times (u^1, u^2) + c_2(u^3) \times (u', u^2)$$
 (8)

выражает трехмерную поверхность X_3 , вложенную в E_4 . Линейный элемент X_3 равен

189

$$ds^2 = g_{ij}^* (u^1, u^2, u^3) du^i du^j + g_{i3}^* (u^3) (du^3)^2,$$

где

$$g_{ij}^* = (\delta_i^k - c_1 h_i^k - c_2 k_i^k) (\delta_j^e - c_1 h_j^e - c_2 k_j^e) g_{ke}$$

$$g_{i3}^* = 0$$

$$g_{33}^* = (c_2')^2 + (c_2')^2$$
(9)

Если обозначить $w = \int V \overline{g_{33}(u^3)} \ du^3$, то линейный элемент при-

мет вид

$$ds^2 = g_{ij}^*; du^i du^j + dw^2,$$
 (10)

который показывает, что линии w будут геодезическими линиями X_3 , а поверхность w= const ортогональна направлениям этих линий Из (9) получаем выражение $(c_1^*)^2+(c_2^*)^2=1$, которое показывает, что кривая $\{c_1(w), c_2(w)\}$, находящаяся в нормальной плоскости, отнесена к длине дуги. Обозначим коэффициенты второй квадратичной формы X_3 через $\pi_{\alpha\beta}=-\partial_{\alpha}r^*\partial_{\beta}n=\nabla_{\alpha}r^*$, где n-нормальный вектор $(\alpha,\beta=1,2,3)$. Очевидно, что $\pi_{i3}=0$ (i=1,2).

Из деривиационного уравнения следует

$$\nabla_3 r_3^* = \pi_{33} n.$$

но так как в нашем случае $\Gamma_{33}^* = \Gamma_{33}^3 = \Gamma_{13}^3 = 0$, то имеем

$$\frac{\partial r_3}{\partial u^3} \pi_{33} n.$$

Отсюда, вследствие (8), получаем

$$c_2 x + c_2 y = \pi_{33} n,$$

следовательно,

$$\tau_{33} = V (c_1^*)^2 + (c_2)^2 .$$

т. е. π_{33} есть кривизна кривой, лежащей в нормальной плоскости. Для π_{lj} получаем выражение

$$\pi_{ij} = \frac{(\hat{o}_i^e - c_1 h_i^e - c_2 k_i^e)(c_1^e h_{ej} + c_2^e k_{ej})}{V(c_1^e)^2 + (c_2^e)^2}.$$
(11)

Если, кроме того, главная сеть χ_2 является координатной, то $h_{12}=k_{12}=g_{12}=0$ и из (11) получаем $\pi_{12}=0$. Таким образом, матрицы фундаментальных тензоров X_3 получают диагональный вид

$$\pi_{ii} = \frac{(1 - c_1 h_i^i - c_2 k_i^i)^2 g_{ii}^*}{V(c_1^*)^2 + (c_2^*)^2}$$

$$\pi_{ii} = \frac{(1 - c_1 h_i^i - c_2 k_i^i)(c_1^* h_{ii} + c_2^* k_{ii})}{V(c_1^*)^2 + (c_2^*)^2} \quad (i = 1, 2).$$

Таким образом, главные направления на X_1 образуют голономную систему.

В заключение я хочу выразить глубокую благодарность А. П. Нордену, под руководством которого выполнена эта работа.

Казанский государственный университет им. В. И. Ульянова-Ленина

u. Վ • ՉԱՔՄԱԶՅԱՆ

Երկակի նորմալացված մակերեվույթի մի ձեվափոխության մասին

1. Դիտարկենք նորմալացված x₁ մակերևույթն ընկղմված էվկկլիղյան E₄-ում։ Վերցնենք x₂-ինորմալ հարթությունում կետ հաստատուն կոորդինատներով x₁ y թապերմի նկատմամր։ Այդ կետի չառավիղ վեկտորը

$$r^*(u^1, u^2) = r(u^1, u^2) + c_1 x(u^1, u^2) + c_2 y(u^1, u^2)$$

սևումաուղ է բևիևանափ դակբևրունի՝սևն ղբրե ինմարակրդե x - ավ։

Դիֆերենցենք ըստ Աւ վերջին արտահայտությունը և հաշվի առնենք (1) կստա-

$$r_i^* = (c_i^k - c_1 h_i^k - c_2 h_i^k) r_k$$

Այս հավասարումը ցույց է տալիս, որ համապատասխան կետում x, և x մակերևույ θ վույ θ ի շոշափող հար θ ու θ յունները զուգահեռ են։ Բացի դրանից x_2 և x_2 մակերևույ θ ներն ունեն ընդհանուր նորմալ հար θ ու θ յուն։ x-ի համար ստանում ենք արտահայտու θ յուններ

$$X r_i^* = 0$$
, $Y r_i^* = 0$, $X Y = 0$, $X_i Y = 0$

իսկ այս ցույց է տալիս, որ X^2 -ը թույլատրում է երկակի նորմալացում նույն X և Y-ով։

Բացի ղրանից X_2 և մակերևույB Γ ւերին S_3 -ի վրա համապատասխանում է նույն ախերիկական պատկեր Σ_2 -ը։

Արտ նարներ, առնա ժերուվու մարնե X^* -իր բավասաևուզն ատանուց է արժանել երկակի րաևաև մերավան X^* զակրերուներն գև X^* -ի չավասարարարուց է ութերիկակար առաներ և Σ^* կանուԱրտ նարներ կանով երև առան, ան (*) չավասարարուցն ատանուց է արև կանուց է ութերիկակար առաներ Σ^* կանու-

2. Ծնթադրենք, որ (*) հավասարման մեջ Հյ և Հշ կախված են Այ, ԱԿ պարամետրից։ Այդ դեպքում ստացվում է հետևյալը

$$r^* = r(u^1, u^2) + c_1(u^1, u^4) X(u^1, u^2) + c_2(u^1, u^4) Y(u^1, u^2).$$

^{*} по і не суммировать.

տանագու $oldsymbol{eta}$ առ $oldsymbol{a}$ և $oldsymbol{a}$

 $ds^2 - g_{11}^* (du^1)^2 + g_{22}^* (du^2)^2 + g_{33}^* (du^1)^2 + g_{44}^* (du^4)^2$

Այստեղից հետև — ամեն մի երկակի նորմալացված մակերևույթի հետ կարելի է կապել քառորթոգոնալ սիստեմի կոորդինատային մակերևույթներ E -ում։

3. ըրթադրերը որ (*) չավաստիվար վիջ c₁, c₂ կախված իր կաղմում եր չոլորով սիստեմ։

ЛИТЕРАТУРА-ЧРИЧИВЫ БЕЗПЬЪ

¹ А. В. Чакмазян, ДАН АрмССР, т. XXVIII, № 4 (1959). А. П. Норден, Известия высших учебных заведений. Математика, № 4 (5), 1958. ³ А. П. Норден, Пространства аффинной связности, М.—Л., Гостехиздат, 1950. ⁴ А. В. Чакмазян, ДАН АрмССР. т. XXIX, № 1 (1959).