XXVII

1958

ФИЗИКА

Н. М. Кочарян, чл.-корр. АН Армянской ССР, А. С. Алексанян, Х. Б. Пачаджян и Э. Ц. Левонян

Исследование работы пузырьковой камеры с разными бинарными смесями

Фреон-12 и углекислый газ (Представлено 28. VII. 1958)

Нами был поставлен ряд экспериментов по определению рабочей области в пузырьковой камере, наполненной бинарной смесью фреон-12 и углекислым газом в зависимости от концентрации, давления и температуры смеси. Для этой цели мы использовали пузырьковую камеру объемом $500\ cm^3$, описание которой дано в работе (¹). В (²,³) приводятся данные о работе пузырьковой камеры, наполненной смесью фреон-12 (CCl_2F_2) + фреон-13 ($CClF_3$) и пропан + углекислый газ. Имеются данные (⁴), свидетельствующие о том, что в таких бинарных смесях рост пузырьков идет в основном за счет растворителя, а не растворенного газа. Предполагается, что роль газа в этом случае сводится к понижению коэффициента поверхностного натяжения (α).

Мы поставили перед собой задачу определить понижение поверхностного натяжения жидкости в зависимости от температуры и концентрации растворенного газа в жидкости. В настоящей работе приводятся данные зависимости α от температуры для чистого фреона-12 и для смеси, состоящей из фреона-12 и растворенного в нем углекислого газа.

Необходимое $\left(\sim 4 \, \frac{\partial u h}{c M} \right)$ низкое значение коэффициента поверхностного натяжения достигалось растворением в жидком дихлордифторметана (фреон-12) углекислого газа под достаточно большим давлением. В качестве рабочей жидкости мы выбрали фреон-12 вследствие малого значения $\alpha \left(\sim 10 \, \frac{\partial u h}{c M} \right)$ и сравнительно большой плотности (1,317 г/с.и3) при комнатной температуре.

На рис. 1 дана зависимость коэффициента поверхностного натяжения от температуры для чистого фреон-12 и для смеси фреон-12 и углекислого газа ($3,5^{\circ}/_{\circ}$ СО₂ по весу). По-видимому, очень удобно применять СО₂ в качестве растворенного газа, так как он хорошо ра-

створяется в ССI₂F₂ при умеренных давлениях (до 35 атм.), с заметным уменьшением поверхностного натяжения жидкости.

Мы провели серию экспериментов по определению чувствительной области, в зависимости от температуры (t) и давления насыщен-

Рис. 1. Зависимость коэффициента поверхностного натяжения — 2 от температуры 1°С. Сплошная кривая для чистого фреона-12, пунктирная для смеси фреон-12 и углекислого газа (3,5%) CO₂ no Becy).

ных паров (P_{∞}) жидкости в пузырьковой камере, для чистого фреона-12 н смеси фреон-12 и СО2 при разных концентрациях. На рис. 2 дана диаграмма чувствительной области зависимости температуры от Р для чистого ССІ F. и смеси CCl₂F₂+CO₂. Из днаграммы следует, что для того, чтобы работать при относительно низких температурах, требуется увеличить концентрацию

углекислого газа

дин \ поверхностного натяжения ЧТО приводит снижения

давления насыповышению щенных паров бинарной смеси. Нам удалось достигнуть рабочего режима (когда камера чувствительна к ионизирующему излучению) температуры около 30 С. Но. этом случае, давление собственных паров смеси достигало до 30 атм.

Сверху (на рис. 2) чувствительная область ограничена кривой (1) для чистого фреона-12. Кривая (2) ограничивает чувствительную область, и область "тумана", где происходило бурное кипение всей толще жидкости в отсутствии у-источника. Кривая (3) разграничивает чувствительную область и область, где жидкость в пузырьковой камере имеет поверх-

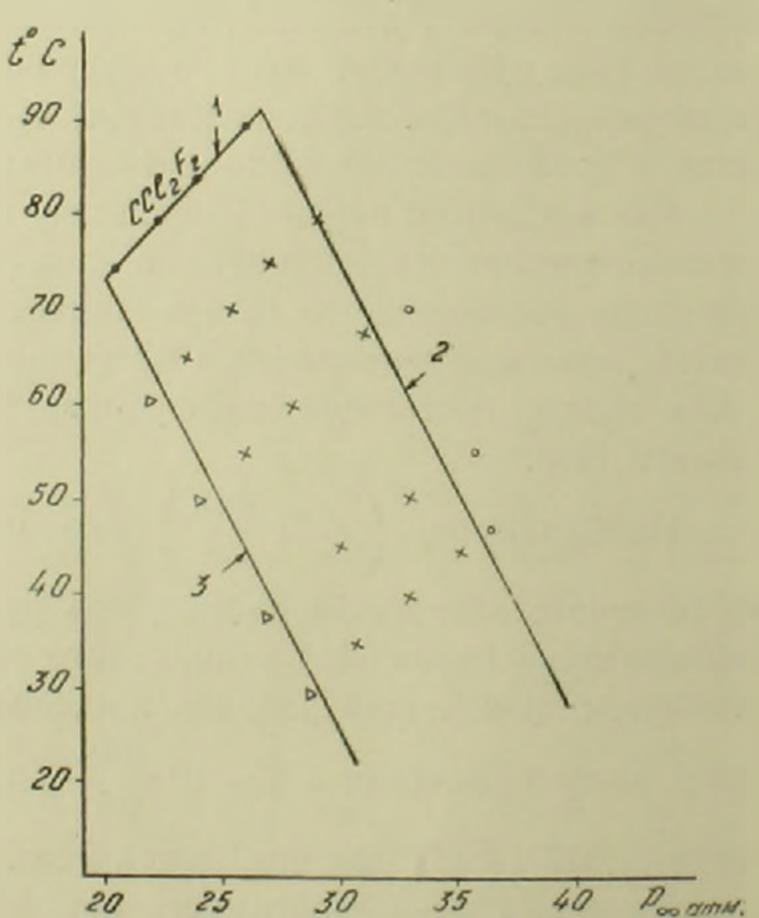


Рис. 2. Зависимость рабочей температуры от давления насыщенных паров в пузырьковой камере, наполненной смесью фреон-12 (CC_2I_2F) и углекислого газа (CO_2) .

ностное натяжение больше $4\frac{\partial u h}{c M}$, и ее нельзя перевести в достаточное метастабильное состояние, необходимое для наблюдения треков от электронов отдачи от γ -источника.

Выгоднее работать такой бинарной смесью, в которой применяемый газ имеет низкое парциальное давление и значительно понижает поверхностное натяжение жидкости.

Отметим наиболее важные результаты, полученные в настоящей работе.

- 1. Поверхностное натяжение фреона-12 можно снизить до 3—4, необходимое для чувствительности к нонизирующему излучению в области температур от 70 до 30 С, растворяя углекислый газ.
- 2. Чувствительная область для смеси фреон-12 и угекислого газа большая, от 70°С до комнатной температуры, что сильно облегчает выбор рабочего режима при конструировании пузырьковых камер объемом больше 100 литров.

Авторы считают своим долгом выразить благодарность Л. П. Котенко и Е. П. Кузнецову за ценные советы по конструированию камеры.

Физический институт Академии наук Армянской ССР

Ն. Մ. ՔՈՉԱՐՅԱՆ, Z. Ս. ԱԼԵՔՍԱՆՅԱՆ, Խ. Բ. ՓԱՉԱՋՅԱՆ ԵՎ Է Ծ. LԵՎՈՆՅԱՆ

Ցարբեր բինարային խառնուրդներով բչտիկային կամերայի աշխատանքի հետազոտությունը

ֆրեսն-12 և ածխաթթու գագ

Դրված են տարբեր փորձեր ֆրևոն-12 և ածխաԹԹու դազի ըինար խառնուրդով բչտիկային կամերայի աշխատանքը հետադոտելու, կախված խառնուրդի խտուխյունից (կոնդենտրացիայից), ճնշումից և ջերմաստիմանից։ Պարզվել է՝

1. Ածիա թթու դաղը ֆրևոն-1 - ի մեջ լուծելով, կարելի է լուծույթի մակերևութային լարվածությունը իջեցնել մինչև 3—1 և հնարավոր դարձնել կամերայի աշխատանքը նորմալ դդայնությամը (իոնիդայնող ճառագայթման նկատմամը) 70—30 և չերմաստիձանային տիրույթի համար։

2. Ֆրևոն-13 և ածխաթթու դաղի խառնուրդի ղզայնության տիրույթը րարձր է՝ 70°C-ից մինչև սևնյակի ջևրմաստիճան, որը շատ չևշտացնում է մեծ ծավալ ունե-

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 H, M. Кочарян, А. С. Алексанян, Х. Б. Пачаджян н Э. Ц. Левонян, ДАН АрмССР, XXVII, № 4 217, 1958. ² Г. А. Блинов, Ю. С. Крестников, М. Ю. Ломанов, Я. Я. Шаламов, ЖЭТФ, 32, 1572 (1957). ³ П. Е. Арган А. Джили Nuovo Cim. 4. 953 (1956). ⁴ П. Е. Арган, А. Джили, Е. Пикассо, Г. Томасини, Л. Гонолла, Доклад на конференции по физике элементарных частиц высоких энергий в Венеции (1957).