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We study the time-like geodesics in the spacetime of the Rindler-modified Schwarzschild
black hole (RMSBH) with a cosmological constant. We find that for massive particles, whether
undergoing radial motion or orbital motion, are unable to escape the black hole. Meanwhile, at
larger orbital radii, the cosmological constant significantly modifies the proper velocity of particles.
Additionally, in the case where 0 , we have presented a special solution: if the particle is located
on a specific circular orbit, its proper velocity will remain unaffected by the Rindler acceleration.
Furthermore, we discuss the stability of circular orbits by employing the Lyapunov exponent, and
draw the dividing line between stable and unstable circular orbits.
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1. Introduction. As one of the greatest achievements of classical physics,

the General Theory of Relativity (GR) has been widely tested and proven to be

correct since its proposal. Among them, many gravitational effects near black holes,

such as gravitational redshift [1], perihelion precession [2], light bending [3],

quasi-normal modes [4], and gravitational waves [5] can provide tests for GR. The

recent release of the first image of a black hole by the Event Horizon Telescope

collaboration to the world has further confirming the existence of the most famous

celestial bodies predicted by the theory [6]. As we all know, GR is a theory about

the geometry of space-time, which explains gravity as the curvature of space-time.

Particles will move along geodesics when they are not subjected to any interactions.

One of the best ways to investigate the gravitation of a black hole is by studying

the particle's motion around it. In fact, the two earliest and most famous

verifications of the relativistic effect are the perihelion precession of Mercury and

the deflection of light near the sun. There have been extensive studies on the

calculation of geodesics around black holes [7-18]. In addition, to investigate the

scalar curvature invariants, time-like geodesics or null geodesics are another

important criterion for examining the singularity of spacetime. Recently, there

have been several interesting results regarding the completeness of geodesics and
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spacetime singularities, which one can refer to [19-21].

In fact, our understanding of gravity on a large scale is still not perfect, which

is mainly reflected in the problems of cosmological constant and dark matter [22].

The dark matter puzzle originated from Zwicky's observation of the abnormal

velocity distribution in the Coma Cluster, where the galaxies were moving at such

high speeds that it was difficult for them to remain bound within the cluster.

Zwicky pointed out that this might be due to the existence of some matter that

we cannot see [23,24]. Another puzzling gravitational anomaly is the anomalous

deceleration of the Pioneer spacecraft. Although this deceleration is very slight,

it remains unexplained by our current theories. Another explanation for the above-

mentioned problem of gravitational behavior at large scales is to modify the

existing theories of gravitation. For example, the Modified Newtonian Dynamics

(MOND) [25] and  Rf  theory [26,27] can, to a certain extent, explain the dark

matter problem. In [22], Grumiller proposed an effective model, or the RMSBH

model, to explain the anomalous acceleration of the Pioneer spacecraft. In this

model, besides the attraction provided by the central celestial body, there is also

an additional Rindler term. If the Rindler term is positive, it would also provide

an additional attractive force to nearby celestial bodies. This term is directly

proportional to r, and thus its effect on the geodesics of particles becomes evident

at large distances. Based on this property of the Rindler term, it can explain the

rotation curves of local galaxies, making it a possible candidate theory to solve dark

matter problem [28]. Lin et al. [29] showed that the Rindler acceleration parameter

a in the RMSBH metric plays the role of dark matter. Authors [30-32] further

verify the acceleration parameter by considering the HI Nearby Galaxy Survey, and

the resulting Rindler acceleration parameter was approximately 9103 a cm/s2.

Iorio [33] considered the Rindler acceleration as a perturbation and computed the

effects on the range   and range-rate   between the two bodies in orbital motion.

He derived an upper limit for the additional acceleration a
Rin

 provided by the Rindler

term, which for the Earth is 16107  m/s2. Carlone et al. [34] discussed the classical

tests of general relativity in the presence of Rindler acceleration. In their study, the

perihelion shifts, light bending, and gravitational redshift of the solar system planets

were calculated. The tightest constraint on Rindler acceleration they obtained, with

no caveats, comes from radar echo delay, with the result 3a nm/s2. One can

also refer to [35] for the calculation of light bending in the presence of Rindler

acceleration. Halilsay et al. [36] further discussed the impact of Rindler accel-

eration on the radial and circular motions of test particles, including both massive

and massless particles.

However, in the aforementioned studies on geodesics for the RMSBH, the

influence of the cosmological constant was not taken into account. In such cases,

the RMSBH degenerates into the Grumiller-Mazharimousavi-Halilsoy black hole
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(GMHBH) [37]. The effect of the cosmological constant on geodesics has been

extensively reported, for example, Mohammadi et al. [38] studied the null geodesic

of Schwarzschild black hole in anti-de Sitter spacetime with Gaussian matter

distribution, Hegde et al. [39] investigated the null Geodesics of four-dimensional

Gauss-Bonnet AdS black hole, geodesic motions in AdS Soliton background space-

time can be found in [40]. Additionally, black hole thermodynamics, considering

the cosmological constant as pressure and introducing extended phase space has

significantly expanded the field. Here, we will not delve into the details. For

research on black hole thermodynamics in extended phase space, one can refer

to [41-50].

The organization of this paper is as follows. In Sections 2 and 3, we will

briefly introduce the geometric structure of the RMSBH spacetime and the basic

concepts of geodesics, respectively. In Section 4, we will study the geodesics of

radial motion of particles in the RMSBH spacetime. Sections 5 and 6 will focus

on the geodesics of massive particles in circular orbits. Finally, we summarize and

discuss the results and present future prospects. In our study, we consider a positive

Rindler acceleration (a > 0) and a negative cosmological constant ( 0 ).

2. Space time structure. In this section, we will briefly study the space-

time structure of a RMSBH. To construct the effective model for gravity of a

central object at large scales, Grumiller [22] considered the following four-

dimensional spherically symmetric line element

    , sin 22222  
 ddxdxdxxgds ii

(1)

where the 2-dimensional metric  ixg  and the surface radius  ix  depend only

on the coordinates  rtxi  , . To obtain specific solutions for the metric, it is

necessary to further describe the dynamics of the field g  and  . This is

possible in two dimensions, as both the metric g and the scalar field   are

essentially two-dimensional objects. The process of "spherical reduction" [51]

simplifies the 4-dimensional Einstein-Hilbert action to a specific 2-dimensional

dilaton gravity model [52]. Grumiller constructed the most general 2-dimensional

theory with the field content g and   compatible with the following assumptions

[22]. First of all, he required the theory to be power-counting renormalizable,

assuming that non-renormalizable terms are suppressed. This leads uniquely to the

action [53,54]

      . 22
1 22

2  


 VRfgxdS (2)

Here,   gg det  and R is the Ricci scalar. The gravitational coupling constant

  does not play a role in the discussion. Further, Grumiller et al. assumed that

the functions f and V are analytic with respect to   when   is large, as in
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spherically eliminated GR [52]. The analysis of the motion equations indicates

that, in order to replicate the Newtonian potential -M/r, the coupling function

f multiplied by the Ricci scalar R must be specified as 2f . If considering
2 cf , then the potential energy would transform into crM 1 , and the

experimental constraint on c is 10101 c  [55]. Grumiller [22] conservatively

assumed that 2f  remains unrenormalized in the infrared region, which is

highly consistent with experimental data. Next, in fourdimensional terms, Grumiller

[22] considered a large surface area surrounding a central object. After spherical

reduction, the limit of a large surface area leads to the limit of a large Dilaton

field  . The potential V is assumed to behave as follows

 . 12  Οb
~

a~
~

V (3)

At large  , the dominant term of the potential V is quadratic. If higher-order terms

of   were present, the resulting metric would exhibit curvature singularities at large

 . By rescaling   and   simultaneously, the subleading coefficients in the

asymptotic potential (3) are fixed. Without loss of generality, Grumiller chose

2 bb
~

. By eliminating all asymptotic subleading terms and selecting an appropriate

normalization for the coupling constant 1 , the action (2) simplifies to [22]

    ,2862 2222 aRgxdS (4)

where a and   represent the Rindler acceleration and the cosmological constant,

respectively. By varying the action (4) and solving the Einstein field equations,

one can obtain a spherically symmetric line element as [22,37]

     , sin 22222122   ddrdrrfdtrfds (5)

with

  . 2
2

1 2 arr
r

M
rf  (6)

Here, M represents the mass of the black hole and a is the parameter for Rindler

acceleration with the range 3a  nm/s2.   represents the cosmological constant. It

is clear that the black hole solution mentioned above is an extended version of the

Schwarzschild-de Sitter solution, or an extension of the Schwarzschild Anti-de Sitter

black hole. To examine the singularity of spacetime at the origin of the coordinates,

we will proceed to calculate the Kretschmann scalar, which is given by

  . 24
483248 2

2

2

6

2




 


r

a

r

a

r

M
RRrK (7)

At the origin, we have   


rK
r 0
lim , thus, there exists a singularity at the origin.

Additionally, the Kretschmann scalar of RMSBH is larger than that of SBH with

the same mass. The horizon of the black hole is given by setting   0hrf , where
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r
h
 represents the radius of the horizon. As a result, we can obtain the relationship

between M and r
h
 as

 . 21
2

1 2
hhh rarrM  (8)

From Eq. (8), we can observe that when 0hr ,   221 2
hhh rarr   is an

increasing function of r
h
. Therefore, Eq. (8) will only yield one solution, indicating

that the RMSBH has only one horizon. Since the expression of the horizon radius

r
h
 is too complicated, we will not present it here. In Fig.1, we show the trend

of r
h
 changing with a and  . It can be observed that as the influence of the

acceleration parameter a and the cosmological constant   increases, the horizon

radius r
h
 gradually decreases.

3. Introduction to geodesics. In order to study the geodesic structure of

the spacetime described by (5) and (6), we introduce the following Lagrangian

, 
2

1 
 xxg L (9)

where a dot indicates the derivative with respect to the affine parameter  .

Combining Eq. (6), we can specifically write the Lagrangian of the RMSBH as

 
 

. sin
1

2

1
2

22

2

2

22
































































d

d
r

d

d
r

d

dr

rfd

dt
rfL (10)

Substitute the Lagrangian into the Euler-Lagrange equation

, 0

















  xxd

d LL


(11)

we can obtain the equations of motion. Since the RMSBH metric is spherically

symmetric, the metric is not a function of the coordinate time t and the rotation

Fig.1. (a) r
h
 as a function of a for different values of   with M = 1. Black dot denotes the

event horizon for the SBH. (b) r
h
 as a function of   for different values of a with M = 1.
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angle  , so two conserved quantities can be derived from the Lagrangian, namely

  , 











d

dt
rfE (12)

. sin22













d

d
rL (13)

Here, E and L are two conserved quantities, representing energy and angular

momentum, respectively. Generally speaking, E and L are not the quantities

measured by static observers in curved spacetime, but rather they are the quantities

measured by static observers only at infinity. In addition, we can also obtain an

equation for   through Eq. (10) and Eq. (11)

. 2cossin

2

2

2

2
2




















































d

d

d

dr
r

d

d
r

d

d
r (14)

Without loss of generality, we adopt the following initial conditions

. 0, 
2

0
0 






d

d
(15)

Hence the angular momentum can be simplified as

. 2














d

d
rL (16)

By choosing the Lagrangian 2L  and combining with Eq. (10), we can obtain

 
 

. sin
1

2

22

2

2

22















































 d

d
r

d

d
r

d

dr

rfd

dt
rf (17)

Substituting Eq. (12) and Eq. (16) into Eq (17), we can obtain

, 2

2

effVE
d

dr











(18)

where the effective potential is defined as

  . 
2

2












r

L
rfVeff (19)

Eq. (12), Eq. (16), Eq. (18) and Eq. (19) are the basis for studying geodesics.

4. Radical geodesics. For time-like geodesics, which represent the motion

of massive particles ( 1 ), the effective potential is

. 2
2

1 2 arr
r

M
Veff  (20)
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It should be noted that at infinity, the effective potential becomes infinitely large.

Therefore, for a massive particle undergoing radial motion, it is impossible for

it to escape to infinity. This is a notable difference between RMSBH and SBH,

as shown in Fig.2. Additionally, compared to the influence of the Rendler

acceleration a on the effective potential energy, the cosmological constant term

is proportional to the square of the radius. Therefore, at large distances, the

cosmological constant plays a dominant role in governing the motion of particles.

Now, we introduce a test particle to observe its radial motion in the RMSBH

spacetime. Our test particle is initially located at r = r
i
 and is released from rest,

thus we have

  . 2
2

1 22
ii

i
ieff rar

r

M
rVE  (21)

By substituting 2E  into Eq. (18), we can obtain the equation of motion for the

test particle as

   . 2
11

2 22
2

ii
i

rrrra
rr

M
d

dr






















(22)

Therefore, the proper time for the particle to travel from r
i
 to r is

     



























r

r

ii
i

i

drrrrra
rr

Mr . 2
11

2

21

22
(23)

Furthermore, combining Eq. (12) and Eq. (22), the differential relationship

between r and the coordinate time t can be written as

      . 2 rVE
E

rf

d

dr

E

rf

d

dr

dt

d

dt

dr
eff







 (24)

Integrating the above equation and combining the initial conditions of the test

Fig.2. V
eff
 vs r for some   with M = 1, a = 0.1.
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V
e
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particle, we obtain the coordinate time for the test particle as

 
 

 
   

. 
1

dr
rVrV

rV

rf
rt

r

r effieff

ieff

i

 
 (25)

As shown in Fig.3a, a test particle is initially stationary at r
i
 = 6, after being

released, will reach the singularity in a finite proper time. Meanwhile, an increase

in the absolute value of cosmological constant will cause the particle to experience

less proper time before hitting the singularity, where the geodesic will also

terminate. In Fig.3b, it can be observed that as the influence of the cosmological

constant increases, an observer at infinity will see the particle approaching the

black hole's event horizon in less time, but the particle will never be able to cross

the event horizon and enter the black hole.

5. Orbital geodesics.

5.1. The behavior of effective potential for massive particles. In this

section, we will study geodesic motion with 0L . Thus, the effective potential is

. 12
2

1
2

2
2






















r

L
arr

r

M
Veff (26)

For convenience, in this section, we will set M = 1. Also, we won't provide too

many calculations in this section, most of the calculations actually come from

the next section. The purpose of this section is to provide a qualitative analysis

of the orbital geodesics of massive particles around a RMSBH from the perspective

of effective potential. Based on the angular momentum of test particles, the orbital

motion can be classified into the following three scenarios:

(1) When L < 4.34, test particles will eventually fall into the black hole, this

this is because 


eff
r

Vlim , therefore, in this case, there is no escape orbit for

Fig.3. (a)   vs r for some with   with M = 1, a = 0.15. (b) The t(r) curve corresponding
to (a).
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the particle, as shown in Fig.4a;

(2) When L = 4.34, the innermost stable circular orbit (ISCO) will appear at

r = r
A
, as shown in Fig.4b. Given that the ISCO is an unstable circular orbit,

particles on it will eventually fall into the black hole due to even slight

perturbations. If the particle is not on the ISCO, it will also eventually fall into

the black hole;

(3) When L > 4.34, if the particle's energy satisfies 2
1

2 EE  , the particle may

be located at r = r
A
 or may be in a stable circular orbit at r = r

B
, as shown in

Fig.4c. Particles located at r = r
A
 will inevitably fall into the black hole. Meanwhile,

particles on the stable circular orbit, upon experiencing a certain perturbation

causing its energy to increase from E
1
 to E

2
, will move in a bound orbit between

perihelion C and aphelion D. If the particle's energy satisfies 2
3

2 EE  , it may

be in an unstable circular orbit at r = r
E 
, and after experiencing a slight

perturbation, the particle may either fall into the black hole or move in a bound

orbit between r
E
 and r

F 
.

Through the above discussion, it can be observed that a notable difference from

the SBH spacetime is that particles moving on orbital orbits in the RMSBH

spacetime do not possess escape orbits. This is due to the significant changes in

the effective potential brought about by the acceleration parameter a and the

Fig.4. (a) to (c) respectively represent

V
eff
 as a function of r at different values of

L with M = 1, a = 0.1, 010. .

t
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e
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cosmological constant  . Meanwhile, compared to the GMHBH, the cosmological

constant term in the RMSBH significantly increases the effective potential at large

distances. Consequently, the energy required for particles to perform circular

motion at these large distances will also increase.

5.2. Circular orbits. In this section, we mainly focus on circular time-

like orbits. From Eq. (18), we can see that for a particle to maintain a circular

orbit, it requires

. or0 2
effVE

d

dr



(27)

We notice that under such conditions, the radial proper velocity is

, 02
2

1
21

2 

















d

dr
arr

r

M

d

dl
v r
pr (28)

therefore, when a particle moves in a circular orbit, its coordinate distance from

the central celestial body remains constant, and so does its proper distance, both

of which remain unchanged over time. In the calculation of the aforementioned

proper velocity, Eq. (A6) in Appendix A is utilized. Since circular orbits occur

at the extrema of the effective potential, we can determine the conditions for a

particle to be on a circular orbit by

    
. 0

232
4

2222





r

rarMrarrML

dr

dVeff
(29)

Eq. (29) can give the angular momentum that particles on circular orbits need

to satisfy

. 
3 2

542
2

arrM

rarMr
L




 (30)

To ensure that 02 L , the radius of the circular orbit must satisfy

. 03 2  arrM (31)

Thus, we have

, 
1121

6




aM

M
rr b (32)

where r
b
 represents the boundary of the circular orbit radius. Obviously, r

b
 is a

decreasing function of a and is not affected by the cosmological constant. When

0a , Mrb 3 , corresponding to the case of the SBH. Substituting 2L  into

the effective potential (26), we can obtain the effective potential as

  
 

. 
3

212

2

22

arrMr

rarrM
Veff




 (33)
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Considering the conditions for circular orbits, we can further derive

  
 

. 
3

212

2

22
2

arrMr

rarrM
VE eff




 (34)

Using Eq. (30) and Eq. (34), we plotted the relationship between L and E with

r as the parameter, as shown in Fig.5. It can be observed that for particles on

unstable circular orbits, as the radius r increases, both their energy and angular

momentum decrease. The minimum values of energy and angular momentum

correspond to the ISCO. After that, as the radius of the circular orbit increases,

both the energy and angular momentum of particles on stable circular orbits begin

to increase. At the same time, it can be noticed that as the value of a increases,

the curve shifts downwards and to the right, while with the increase in the absolute

value of  , the curve shifts upwards and to the right.

The ISCO refers to the circular orbit with the smallest radius among all stable

circular orbits. In addition to satisfying the conditions of Eq. (29), the radius of

ISCO r
ISCO

 also needs to meet 022 ISCOeff drVd , namely,

    , 0342153126 542322  ISCOISCOISCOISCOISCO rararMaaMrMrM (35)

the solution is

   
 

. 
3415

12236

23

232

ISCOISCOISCO

ISCOISCOISCOISCO

arrMr

arrMararM






(36)

This is the condition that the r
ISCO

 of a RMSBH satisfies. Setting 0 , we can

derive the r
ISCO

 of a GMHBH satisfies

Fig.5. (a) The relationship between the angular momentum and energy of particles located on
circular orbits for different values of a with 010. . The arrow direction indicates the increasing

direction of r. (b) The relationship between L and E for different values of   with a = 0.1.
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. 
4

980192312
2

22

ISCO

ISCOISCOISCO

r

rMrMrM
a


 (37)

Further setting a = 0 in Eq. (37), we can get the radius of the ISCO of a SBH,

which is MrSBHISCO 6  [56]. As can be seen from Fig.6a, the radius of the ISCO

decreases with the increase of the absolute value of the cosmological constant, so

compared with the GMHBH of the same mass, the RMSBH has a smaller radius

of the ISCO. Similarly, as shown in Fig.6b, the radius of the ISCO of the

RMSBH decreases with the increase of a. Therefore, we have the following

relationship: 
SBH
ISCO

GMHBH
ISCO

RMSBH
ISCO rrr  .

Next, we will continue to find out the angular velocity   of the particles

moving in circular orbits. Substituting Eq. (34) into Eq. (12), we can obtain

 
. 

3 2arrM

r

rf

E

d

dt





(38)

On the other hand, combining Eq. (30) and Eq. (16), we can obtain

 
. 

3

1
2

2

2 arrM

rarM

rr

L

d

d









(39)

Fig.6. (a) r
ISCO

 as a function of   for
different values of a with M = 1. (b) r

ISCO
 as

a function of a with M = 1, 0 . In both

plots, the black represents the radius of the
ISCO of the SBH, which is Mr SBH

ISCO
6 .

(c) v
p
 as a function of lnr for different values

of   with M = 1, a = 0.1 . The horizontal
coordinate of the black point is lnr

b
.

lnr
0 2 4 6 8 10

=0
=-0.005
=-0.010

=-0.015

v p

0.6

0.7

0.8

0.9

1.0

a

0.0

r
ISCO

1 2 3 4 5 6

r
ISCO

3 4 65

0.2

0.4

0.6

0.8

1.0

(6,0)


0.00

a=0

a=0.015

a=0.030

a=0.060

a=0.090

-0.02

-0.04

-0.06

-0.08

-0.10

a b

c

(6,0)



141STUDY  OF  GEODESICS  AND  LIFESPAN  OF  THE  RMSBH

Thus, the angular velocity is

. 
3

2















r

arM

dt

d

d

d

dt

dRMSBH
(40)

By setting 0 ,   degrades to the GMHBH scenario. Further setting a = 0,

we can get the radius of the angular velocity of the SBH: 3rMSBH  .

Obviously, in Eq. (40), RMSBH  is an increasing function of a and  , therefore

we have: SBHGMHBHRMSBH  .

With the angular velocity at hand, we can derive the proper velocity of a

particle moving on a circular orbit, which can be expressed as

   
 

. 
22

1
32

2

rarrM

rarM

rf

r

dt

d
r

rf
v

RMSBH
RMSBH
p















 
 (41)

In the process of calculating (41), we used Eq. (A7) in Appendix A. Regarding

proper velocity, as shown in Fig.6c, the relationship is as follows: 
GMHBH
p

RMSBH
p vv  .

When r approaches r
b
, both the proper velocities of RMSBH and GMHBH tend

to unity, which is the speed of light, indicating that their circular orbit radii must

be larger than r
b
. The difference lies in the fact that, due to the influence of the

cosmological constant, 
RMSBH
pv  tends to the speed of light at infinity. In contrast,

GMHBH
pv  tends to 22 .

For a GMHBH, Eq. (41) can be rewritten in the following form

      01212
2222






 





  Mvrvarv GMHBH

p
GMHBH
p

GMHBH
p (42)

If 21GMHBH
pv , then the coefficient of a in the above equation will vanish,

and we have r = 4M. This interesting solution indicates that regardless of the value

of a, the proper velocity 
RMSBH
pv  at r = 4M is always 21 . From Fig.7a, we can

observe that as r increases, 
RMSBH
pv  first decreases and then increases, approaching

Fig.7. (a) v
p
 as a function of r for some different values of a, with M = 1. (b) The local

enlargement of (a), with the grey point having coordinates ( 2/1 4, ).
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21  at infinity. Fig.7b allows us to observe the special solution mentioned above.

The proper velocity curve in the SBH scenario also passes through this point.

5.3. Lyapunov exponent for circular time-like orbits. In this section,

we use Lyapunov exponent as a measure of the stability of circular orbit. The

Lyapunov exponent can measure the average convergence rate or divergence rate

of nearby orbits in phase space [57]. In general, a real Lyapunov exponent

indicates that nearby orbits are divergent, while an imaginary Lyapunov exponent

indicates that nearby orbits are convergent. When the Lyapunov exponent vanishes,

it indicates that the orbit is critically stable. The Lyapunov exponent in coordinate

time is given by [58]

 

  
, 

2
2

rt

rVeff




 (43)

where r is the radius of the circular orbits. With this definition, we can derive

the Lyapunov exponent for circular orbits around a RMSBH as

     . 1342151216
1 22322

2
rarrarrarMrM

r

RMSBH  (44)

Setting 0 , Eq. (44) degenerates into the Lyapunov exponent for a

    . 231216
1 232

2
raararMrM

r

GMHBH  (45)

It can be easily verified that by setting a = 0 in Eq. (45), we can obtain the

Lyapunov exponent for the SBH. The black line in Fig.8a represents 0RMSBH ,

with the region to its right ( RMSBH  is a complex number) indicating the area

of stable circular orbits, and the region to its left indicating the area of unstable

Fig.8. (a) The black line represents 0
RMSBH

, which is the dividing line between stable circular
orbits and unstable circular orbits. The dashed line represents r

b
, which is not a function of  ,

hence it is a straight line. (b) The trend of the stable and unstable circular orbit regions of the
GMHBH varying with a is depicted, with horizontal the black dashed line representing the scenario
for the SBH. In both figures, we set M = 1.
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circular orbits. It is important to note that the radius of circular orbits need to

satisfy the condition of r > r
b
. Therefore, unstable circular orbits are located in the

region between the black line and the dashed line. It can be observed that as

the absolute value of the cosmological constant increases, the region of unstable

circular orbits gradually shrinks, and r
ISCO

 shifts towards the left. Fig.8b shows the

trend of the Lyapunov exponent of the GMHBH varying with a. Similarly, the

region of stable circular orbits expands to the left. However, unlike the previous

case, the radius r
b
 also contracts towards the left as a increases, resulting in an

overall leftward contraction of the unstable circular orbit region.

6. Conclusions. In this paper, we studied the time-like geodesics of

RMSBH. It is found that, due to the introduction of acceleration parameter a and

cosmological constant  , a massive particle undergoing radial motion cannot

escape the black hole and will ultimately fall into it. Similarly, massive particles

in circular orbits are also unable to escape the black hole to infinity, which

significantly differ from the scenario in a SBH. Furthermore, for particles in

circular motion, we derived their effective potential V
eff
, energy E, angular velocity

 , proper velocity v
p
, and coordinate velocity v

c
. Both the acceleration parameter

and the cosmological constant are found to increase the coordinate velocity of the

particles. Interestingly, for a GMHBH, we uncovered a unique solution: the

acceleration parameter a does not affect the proper velocity of particles orbiting

on the r = 4M circular orbit.

Additionally, regarding the time-like geodesics, we discussed the stability of

circular orbits by employing the Lyapunov exponent, and drew the dividing line

between stable and unstable circular orbits.
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APPENDIX A

The spacetime geometry is of essential to the motion of particles within it.

Therefore, we will briefly introduce the spacetime geometry of a RMSBH. In a

four-dimensional curved spacetime, the proper spatial distance is defined as

 3 2, ,1 ,,  jidxdxdl ji
ij (A1)

in which
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. 
00

00

g

gg
g

ji
ijij  (A2)

Here, ij  is defined as spatial metric. By substituting the line element (3) into

the definition, we can find the proper distances along the r,  , and   directions

in a RMSBH, respectively, as

. sin, , 2
2

1
21

2 







 



drdlrddldrarr
r

M
dlr (A3)

If we set dr = 0 in the line element (3), we can obtain the line element for surface

of constant r as

 . sin 22222  ddrdls (A4)

It is obvious that (A4) is identical to the line element for a spherical surface in

threedimensional flat space. The proper time and coordinate time of a RMSBH

have the following relationship

. 2
2

1
21

200 dtarr
r

M
dtgd 








 (A5)

Based on this, the radial proper velocity and tangential proper velocity of a particle

are, respectively

, 2
2

1
1

2

dt

dr
arr

r

M

d

dl
v r
pr














 (A6)

. 

2
2

1

sin
21

2

222

dtarr
r

M

ddr

d

dl
v s
ps

















(A7)

ÈÑÑËÅÄÎÂÀÍÈÅ ÃÅÎÄÅÇÈ×ÅÑÊÈÕ ËÈÍÈÉ È
ÂÐÅÌÅÍÈ ÑÓÙÅÑÒÂÎÂÀÍÈß ÌÎÄÈÔÈÖÈÐÎÂÀÍÍÎÉ

ÐÈÍÄËÅÐÎÌ ×ÅÐÍÎÉ ÄÛÐÛ ØÂÀÐÖØÈËÜÄÀ. I.
ÂÐÅÌÅÍÈÏÎÄÎÁÍÛÅ ÃÅÎÄÅÇÈ×ÅÑÊÈÅ ËÈÍÈÈ

Ò.ÕÎ, ×.ËÞ

Èññëåäîâàíû âðåìåíèïîäîáíûå ãåîäåçè÷åñêèå ëèíèè â ïðîñòðàíñòâåííî-

âðåìåííîé ìåòðèêå ìîäèôèöèðîâàííîé Ðèíäëåðîì ÷åðíîé äûðû Øâàðöøèëüäà

(RMSBH) ñ ó÷åòîì êîñìîëîãè÷åñêîé ïîñòîÿííîé. Óñòàíîâëåíî, ÷òî ìàññèâíûå

÷àñòèöû, íàõîäÿùèåñÿ â ðàäèàëüíîì èëè îðáèòàëüíîì äâèæåíèè, íå ìîãóò
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ïîêèíóòü ÷åðíóþ äûðó. Ìåæäó òåì íà áîëüøèõ ðàäèóñàõ îðáèò êîñìîëîãè÷åñêàÿ

ïîñòîÿííàÿ ñóùåñòâåííî âëèÿåò íà ñîáñòâåííóþ ñêîðîñòü ÷àñòèö. Êðîìå òîãî,

â ñëó÷àå, êîãäà 0 , ïðåäñòàâëåíî îñîáîå ðåøåíèå: åñëè ÷àñòèöà íàõîäèòñÿ

íà îïðåäåëåííîé êðóãîâîé îðáèòå, åå ñîáñòâåííàÿ ñêîðîñòü îñòàíåòñÿ íåèçìåííîé

ïîä âîçäåéñòâèåì óñêîðåíèÿ Ðèíäëåðà. Òàêæå àíàëèçèðîâàíà óñòîé÷èâîñòü

êðóãîâûõ îðáèò, èñïîëüçóÿ ïîêàçàòåëü Ëÿïóíîâà, è îïðåäåëåíà ãðàíèöà

ìåæäó óñòîé÷èâûìè è íåóñòîé÷èâûìè êðóãîâûìè îðáèòàìè.

Êëþ÷åâûå ñëîâà: ìîäèôèöèðîâàííàÿ Ðèíäëåðîì ÷åðíàÿ äûðà Øâàðöøèëüäà:

      êîñìîëîãè÷åñêàÿ ïîñòîÿííàÿ: ãåîäåçè÷åñêèå ëèíèè: êðóãî-

     âûå îðáèòû
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