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Within the framework of higher dimensions, we enhance the model of Pandya and Thomas
and assume that the system is anisotropic in the Finch and Skea ansatz. Our model explores various
physical parameters in higher dimensions, including mass, energy density, radial and transverse
pressures, and the anisotropy factor. We have used graphical technique to analyse the energy
conditions, equilibrium conditions, and stability across different dimensions. Furthermore, the mass
of a particular compact object have shown to increase with radial parameter as space-time dimen-
sions increase. Additionally, by generating a mass-radius (M-R) plot, we demonstrate the influence
of dimensional factor on the maximum mass and radius allowed by our toy model.
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1. Introduction. The space-time geometry of Finch and Skea [1], which
Duorah and Ray [2] first created, has drawn a lot of interest in the modelling
of relativistic compact stars since it produces a well-behaved solution that Delgaty
and Lake [3] later demonstrated to meet all the physical conditions of an actual
star assuming isotropy in pressure. Nevertheless, a number of theoretical studies
have demonstrated that anisotropy may arise in the high density region of compact
star objects. According to Ruderman [4] and Canuto [5], the radial pressure p,
and the transverse pressure p, do not necessarily need to be equal in the high-
density regime of compact stars is reason for anisotropy. The existence of type-
3A superfluid, rotation, an electromagnetic field, and other factors are among the
many circumstances that Bowers and Liang [6] discussed in detail about the
possibility of anisotropy in stellar interiors. As a result, several researchers have
looked into the Finch-Skea model in relation to matter anisotropy like Hansraj
and Maharaj [7], Ratanpal [8], Pandya [9], Maharaj et al. [10]. In the last few
decades, a significant amount of study has been done to comprehend problems
in astrophysics and cosmology within the context of lower as well as higher
dimensions. In (2+1) dimensions, the Finch-Skea stellar model has been exam-
ined by Benergy [11], Bhar et al. [12]. Along with new physics, the results gained
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in the standard four dimensions are particularly generalised in higher dimensions.
Higher dimensions have their roots in the research conducted in the past by
Kaluza and Klein [13,14]. In order to reconcile gravitational and electromagnetic
interactions, Kaluza and Klein separately initially proposed the idea of an
additional dimension in addition to the standard four dimensions. The model is
basically a five-dimensional extension of Einstein's general theory of relativity,
which is very relevant to both particle physics and cosmology. However, the first
strategy is ineffective. After it was discovered that many intriguing ideas of particle
interactions require more dimensions than four for their consistent formulation,
research into higher dimensional theories was once again resurrected a few decades
ago, and it was greatly expanded. The results of four-dimensional GTR needed
to be generalised to a higher-dimensional setting in order to examine the
consequences of adding one or more additional space-time dimensions to the
theory. In order to address various issues not understood in the usual four
dimensions, a number of cosmological models in higher dimensions have been
discussed in the literature by Shafi [15], Wetterich [16], Wiltshire [17], Accetta
et al. [18], Paul, Mukherjee [19]. Chodos and Detweiler [20,21] first obtained
a higher dimensional cosmological model in this direction. It is conceivable to
recover the standard four-dimensional Newtonian gravity from a five-dimensional
anti-de Sitter space-time in the low energy limit, according to an intriguing
description of gravity provided by Randall and Sundrum [22]. The extra dimen-
sions are not compact.

Liddle et al. [23] examined the effects of extra dimensions on the Kaluza-
Klein model's ability to explain the structure of neutron stars. As an expansion
of the four dimensions, the mass to radius ratio in higher dimensions for a
uniform density star is calculated, and new findings have been published in the
literature by Paul [24].

With some hope for future experimental discoveries, dimensional physics is
currently a busy field of study [25]. By including a dimensionless parameter D
(>0) in the Finch and Skea ansatz, we have expanded the Pandya and Thomas
[9] model in this work and generally assumed that the system is anisotropic. In
the present work the solution of the Einstein field equation for static spherically
symmetric anisotropic matter distribution in higher dimensions.

The paper has been organized as follows. In section 2, for the assumed form
of the space-time metric, the relevant field equations in higher dimensions have
been laid down. The modified Finch and Skea model and solution is discussed
in section 3. In section 4, the exterior region which is the Schwarzschild metric
is matched with the interior to obtain boundary conditions and the model
parameters. In section 5, the physical viability of our model is shown in different
dimensions. Finally, some concluding remarks have been made in section 6.
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2. Field equations in higher dimensions. The Einstein field equation
in higher dimensions is given by

R —%gaBR:SnGDTaﬁ, (D
where G, is the fundamental parameter of interest defined as the gravitational
constant in higher dimensions. In higher-dimensional theories, G, is related to the
standard four-dimensional gravitational constant G by the relation G,= GV,
where V,, is the volume of the extra dimensions, and D represents the total
number of dimensions. The parameter G, is inherently dependent on the
dimensions. As the dimensionality D increases, the corresponding gravitational
constant G, also increases. This relationship highlights the influence of additional
spatial dimensions on the gravitational interaction, making G, a crucial aspect of
the model's framework in higher-dimensional theories. R, is Ricci tensor, R is
Ricci scalar, g,q is metric tensor and T, is the energy momentum tensor in
D dimensions.

The Einstein's field equations (EFE) describe how matter and energy influence
the curvature of space-time. In vacuum regions, where no matter or energy is
present, the stress-energy tensor T, is zero. The field equations then simplify
to

Rs —%gaBRZO.

We write the interior space-time metric in higher dimensions of a static spherically
symmetric distribution of anisotropic matter in the form

ds® =—e™dt* +e™dr*+r?dQ, 2
where v(r) and u(r) are the two unknown metric functions, n= D-2 and
d Q2 =d 0} +sin’0,d 6] +sin’0,|d 03 +...+sinze,,_lde§) is a linear element on a
n-dimensional unit sphere in polar coordinates parameterized by the angles
0,,0,,...,0,. The dimension of the space-time is assumed as D=n+2 so that
for n=2 it reduces to ordinary 4-dimensional space-time geometry. We follow
the treatment of Maharaj and Maartens [26] and write the energy momentum

tensor of the anisotropic matter in the most general form filling the interior of
the star in the form

TOLB :(p+p)uocu[3_pgq[3+not[3 ’ (3)
where p and p denote the energy-density and isotropic pressure of the fluid,
respectively and u, is the 4-velocity of the fluid. If the energy-momentum tensor

Ty is equal to zero, it implies the absence of matter, which in turn means there
is no energy density or pressure. Since energy density and pressure are functions
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of the metric potentials, their absence suggests that there is no mass, leading to
a scenario where the space-time curvature for the particular metric in question
would be non-existent.

The anisotropic stress-tensor I1,, has the form

g =\/§S{Cacﬁ_%(”aﬁ_gaﬁ)} “4)

where C* = (0, -ée*, 0, 0). For a spherically symmetric anisotropic distribution, 5(r)
denotes the magnitude of the anisotropic stress. The non-vanishing components
of the energy-momentum tensor are the following:

28 S
) =p, T, :_(erﬁ]’ T} =T :—(P—E} %)

Consequently, radial and tangential pressures of the fluid can be obtained as

p,=-T =(p+%} (©)

=-T2 = _E}
po=-1; {P N ™)

S — pr_pt .
5 ®)

Using the space-time metric (2) and energy-momentum tensor (3) of the
distribution the Einstein field equations are subsequently obtained as

n(n— 1)(1 —e ) L we M ’

so that

8nGpp= 52 r 9)
r -2 -2
872Gy p, = nv'e ™ n(n—l)(lz—e “)’ (10)
r 2r
- " ' roor -1 - -1 =2)1- o
8nGDpt:ez“[v v oy )(rv ”))—(” )(”2)2( - ) (11)

where, a prime (') denotes differentiation with respect to the radial parameter r.
By defining the mass m(r) within a radius » as

r 2n(n+l)/2

m(r)=|———=u"plu)du,
O 02
we get an equivalent description of the system as
o 8nG, T((n+1)/2)m(r)
e M=1- 2 ) (13)
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)

(14)

Nars n(n— l)m,

v'r

n

n—2

oD, )[ -

(15)

The solution of field equations is discussed in the next section.

3. Modified Finch and Skea model and solution. We use the ansatz

r
R

2
e“z(

where s >0 is a dimensionless parameter

2
1+—2

J ’ (16)

and R is the curvature parameter having

the dimension of length. By introducing the parameter s, one can impose
constraints on the radius to achieve the desired compactness M/R of the model.

By appropriately setting the compactness

parameter s for a given mass, it becomes

feasible to tune and adjust the compactness of the system. Note that the ansatz
(16) is a generalization of the Finch and Skea model which can be regained by

setting s= 1.
Using Eq. (16) in Egs. (9) and (12

) we have the following

(n(n— 1)/2 rz)(l + rz/Rz)_<1+ rz/Rzy‘ —1]1—115/R2
8nGpp= — ; 17)
(1+}’2/R2>+
e 7_[(n+1)/2 [ 2 -
nlr)= 872G, T((n+1)2) 1_(”?] ' (18)

To integrate Eq. (14), we use the prescription of Sharma and Ratanpal [27] by
assuming the radial pressure in the form

8nGpp, =

Po(l_”2/R2)

R(1+r

(19)

2/R2)”1 ’

which is a reasonable assumption since the radial pressure vanishes at r= R.

Consequently, the curvature parameter
boundary of the star.

R in our model turns out to be the

Substituting Eq. (19) in Eq. (14) we have

e [(1+r2/R2)' —1}

N por(l—rz/Rz)

2 r

nR2(1+r2/R2) ’ 0
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and integrating, we get
2 \2Po/n 2 v 2\
o r Po? u du
e _C[1+F] exp| — Y +(n—1)2‘; (IJFF] 11—, 1)

where C is a constant of integration.
Finally, using Eq. (16), Eq. (19) and Eq. (15), the anisotropy is obtained

as

76,3 5 - _1[”(”‘22) (- 4,()+ M} ) A 2 L)

n| 2r (r2+ RZ) n
(22)
22 ()4 (2 ()+ (n—l)(zn— 2) A3(r)[4(n— 2), 2(n—1)2(n— 2)}
nR r 4 r r
where
2l(e42)— 512/ R2
4(r)=1" [s+2)-s g/ﬂ | (23)
R*(1+?/R?)
(n—l)[ 5/ o\ } porll-r*/R?
A = 1 R°) -1
)= /R Carlie /R )
P2
Alr)=| 1+ 5] (25)
!l—rz/Rz!
A (r): Po T
U R+ R2) (26)
Subsequently, the tangential pressure can be obtained from the relation
&qnGpp, =8nGDpr—8n«/§. (27)

Using the above relations, we also obtain dp,/dp and dp,/dp.

Thus, our model has five unknown parameters namely, C, p,, R, s and n
which can be fixed by the appropriate boundary conditions as will be discussed
in the following sections. To solve these equations, we must select two of the
unknown model parameters independently (#, s). The remaining model parameters
are then determined through boundary conditions. This approach allows us to solve
Einstein's field equations and accurately model stellar configurations. Once the
unknown model parameters are fully determined, we assess the physical plausibility
of our model by evaluating whether the results align with known stellar properties.
This validation process ensures that our model yields accurate and realistic results.
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4. Exterior space-time and matching conditions. For spherically
symmetric matter distributions, the vacuum solutions of Einstein's field equations
are described by the Schwarzschild solution. This solution characterizes the space-
time outside a non-rotating, spherically symmetric mass and is considered a
vacuum solution because it applies in regions where the energy density is zero,
i.e., outside the mass distribution. While modelling anisotropic compact stellar
objects, the Schwarzschild vacuum solution is relevant only outside the star, where
no matter is present. In the specific context of anisotropic compact stellar models,
the vacuum solution would typically be considered outside the matter distribution,
not within the star itself. To ensure physical consistency, the Schwarzschild
exterior solution must match smoothly with the interior solution at the boundary
of the stellar matter. The exterior region of the sphere is described by the
Schwarzschild metric

-1
2M 2M
ds? :_(1_—71—1,1 jd’2+(1_—n-1hj ar’+r*dQ, , (28)
r

r

where M, is related to the mass M as M, =16nG,M /nQ, . The matching
conditions across the boundary surface r= R to be fulfilled are

. oM
2 (R) :[1_ n—lhj’ (29)

7

_ 2M
et =[1— ”] (30)

7

where m(R) = M, is the total mass enclosed within the radius R.
The above boundary conditions yield

2S+1M
Rn—l — h , 31
R 2
_ Po r dr ~(s+2py/n)
C=exp| ——(n—-1 I+—| —-1]—|2 ot
Xp n (” )E[ { RZJ B (32)

Eq. (31) clearly shows that the compactness of the stellar configuration
M/ R will depend on the parameters s and #. This contrasts with the earlier model
developed by Sharma and Ratanpal [27], where s was set to 1, and thus did not
account for this dependence.

5. Physical conditions. A physically acceptable stellar model must satisfy
certain physical conditions

(i) The pressures and density should be positive, p, p, p, >0.

(ii) Radial pressure p should be zero at boundary r=R ie. p, (r=R)=0.

(iii) The density and pressures should be maximum at the centre and
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monotonically decreasing towards the boundary of the sphere, which requires the
following relations:

(dpidr),o =0, (dp,/dr)_ =0, (dp,/dr)_,=0 and (d*p/dr*)_ <0,
(d ’p./ drz)r:O <0, \d*p,/ erLO <0 so that the density gradients and pressure
gradients dp/dr<0, dp,/dr<0, dp,/dr<0 for 0<r<R.

(iv) The condition that the speed of the sound does not exceed light speed
requires that, 0<./dp,/dp <1, 0<./dp,/dp <I.

(v) It must satisfy strong energy condition (SEC): p+p,+2p, >20.

Also the trace energy condition (TEC), or p—p,—2p, 20, should be positive
throughout the star's interior, as proposed by Bondi [28] and Tello-Ortiz et al.
[29].

To show that the developed model is regular, well-behaved and capable of
describing realistic stars, we have considered the data of the pulsar 4U1820 - 30
whose mass and radius have recently been estimated to be M =1.58M, and
R=9.1km, respectively [30].

For stability, in general, the adiabatic index

r=P*tr d,
p, dp
should be greater than 4/3 according [31].

(33)

5.1. Bound calculation. In order to examine the unknown parameter p,,
we use boundary conditions.

(i) For n=2 and s=1.1

* The condition p, (r=R) >0 if p,<1.28 and for p, (r=0) >0 if p, >0.

- The expression 0<dp,./dp<1 (r=R), if 0<p,<3.5 and O0<dp,/dp<]l
(r=0) for 0<p, <1.86.

- The expression 0<dp,/dp<1 (r=R), if 0.43<p,<5.1 and 0<dp,/dp<1
(r=0) for 0.17 <p, <1.41.

- The expression of SEC (r=R) >0, if 0 <p,<3.53 and SEC (r=0) >0,
if p, >0.

The expression of TEC (r=R) >0, if p, >0 and TEC (r=0) >0, if
0<p,<1.104. So for n=2 and s=1.1, our final bound is 0.43 <p <1.1. In this
work, we choose p,=0.44 for n=2 and s=1.1.

(ii) For n=3 and s=1.1

* The condition p, (r=R) >0 if p,<5.8 and for p, (r=0) >0 if p, >0.

* The expression 0<dp,/dp<1 (r=R), if 0<p,<7.05 and O<dp,/dp<]
(r=0) for 0 <p, <3.36.

- The expression 0<dp,/dp<1 (r=R), if 1.08 <p,<6.9 and 0<dp,/dp<]1
(r=0) for 0.60 <p, <3.49.

+ The expression of SEC (r=R) >0, if 0 <p,<13.4 and SEC (r=0) >0,
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if p, >0.
The expression of TEC (r=R) >0, if p, >0 and TEC (r=0) >0, if
0<p,<2.2.

So for n=3 and s= 1.1, our final bound is 1.08 <p,<2.2. In this paper, we
choose p,=1.5 for n=3 and s=1.1.

(iii) For n=4 and s=1.1

* The condition p, (r=R) >0 if p, <15 and for p, (r=0) >0 if p, >0.

* The expression 0<dp,/dp<1 (r=R), if 0<p,<I11.7 and 0<dp,/dp<]1
(r=0) for 0<p, <5.23.

* The expression 0<dp,/dp<1 (r=R), if 2.05<p,<10.2 and 0<dp,/dp<1
(r=0) for 1.3 <p, <6.6.

+ The expression of SEC (r=R) >0, if 0 <p,<33.7 and SEC (r=0) >0,
if p, >0.

The expression of TEC (r=R) >0, if p, >0 and TEC (r=0) >0, if
0<p, <3.68.

So for n=4 and s= 1.1, our final bound is 2.05 <p, <3.68. In this paper,
we choose p,=2.5 for n=4 and s=1.1.

(iv) For n=5 and s=1.1

* The condition p, (r=R) >0 if p, <32 and for p, (r=0) >0 if p, >0.

* The expression 0<dp,/dp<1 (r=R), if 0<p,<17.7 and O0<dp,/dp<]
(r=0) for 0<p,<7.4.

* The expression 0<dp,/dp<1 (r=R), if 3.3<p,<14.5 and 0<dp,/dp<1
(r=0) for 2.3 <p, <10.8.

* The expression of SEC (r=R) >0, if 0 <p,<68.03 and SEC (r=0) >0,
if p, >0.

The expression of TEC (r=R) >0, if p, >0 and TEC (r=0) >0, if
0 <p,<5.52.

So for n=35 and s= 1.1, our final bound is 3.3 <p, <5.52. In this paper, we
choose p,=3.5 for n=35 and s=1.1.

We show that our suggested model is physically valid using a range of
parameters and multiple physical tests. We presented graphical representations to
aid in clarity for the pulsar 4U 1820 - 30. The matter density, transverse, and radial
pressure inside the star object should all be positive for a physically plausible
model. The radial pressure ought to disappear at the fluid sphere's surface.
Additionally, there should be a negative gradients of pressure and density through-
out the radius. We examine the impact of energy density and pressures for the
anisotropic distribution of matter with increasing the dimensions of space-time.
The curve of energy densities and pressures with different space-time dimensions
is displayed in Fig.1. These figures demonstrate that pressures and energy density
are both positive, reaching their maximum at the centres of stellar objects and
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monotonically declining towards their surfaces as needed. Whereas the radial
pressure approaches zero at the star's border, p and p, are both positive. In Fig.2
the profiles of density and pressure gradients are displayed. Plots demonstrate that
these are all negative throughout the stellar interior, confirming the monotonically
declining functions of p, p, and p. Here, we can observe that the energy density
and pressure values increase as the dimensions increase and stay positive through-
out the matter distribution. In contrast, it decreases as the radial coordinate r
increases. To ensure the stability of the star, the model must adhere to the
causality requirement. The radial and transverse sound velocities in our model,
which are less than one with different dimensions as well, are represented by Fig.3.
Understanding the nature of matter content in relativity requires that the model
adheres to the strong energy requirement, which is p+ p,+2 p, > 0. Fig.4 displays
the model's energy state and indicates that the model satisfies the energy criteria
because the graph is positive across the matter distribution. The trace energy
condition is also shows at Fig.4. As such, our energy-momentum tensor behaves
nicely.

5.2. Stability criteria.

5.2.1. Adiabatic index. The adiabatic index is described as follows and
given by [32]:
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an anisotropic, relativistic star configuration's stability is correlated with its adiabatic
index. Any star arrangement will remain stable if the adiabatic index is greater
than 4/3. Fig.6a shows the variation of adiabatic index variation, which makes
it evident that the configurations are stable and the model met the requirements
for every dimension.
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Fig.3. Variation of (a) dp,/dp and (b) dp,/dp against the radial parameter r.
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5.2.2. Cracking method. Using Herrera's cracking idea [33], Abreu et al.
[34] provides the following conditions for the model stability of an anisotropic
matter distribution about the stability factor that if the model followers
-1< vi - vf <0, then the model is a potentially stable model and model followers

8000} ‘ ' Ca ' ' b
& e — 30000 | — 1
E T 1E 3 ~.=3 :
> > 20000 ¢ R ]
= 4000 12 —
S n=4 = . n=4

O b ]
- =2
0 n=2 . 0 L T T
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Fig.4. Variation of (a) (p—p,—2p,) and (b) (p+ p,+2p,) against the radial parameter r.
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Fig.5. Variation of (a) dp, /dp—dp, /dp and (b) Anisotropic parameter S(r) against the radial
parameter r.
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Fig.6. Variation of (a) Adiabatic index and (b) Mass against the radial parameter r.
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1<v? —v? <0, then the model is potentially unstable. Given that the value of
-1< vi —vf <0 in Fig.5a ranges between 0 and -1, we may conclude that this
model has the potential stable in all dimensions.

6. Discussion. In this work, we have expanded the model originally proposed
by Pandya and Thomas [9] by introducing a dimensionless parameter D (>0)
into the modified Finch and Skea [1] ansatz and making the general assumption
that the system is anisotropic. It is noteworthy that our modification of the Finch
and Skea ansatz for the metric potential g_enables a fitting of the theoretically
obtained compactness to the observed compactness of a given star. Additionally,
an intriguing aspect of our approach is that, while it does not require a priori
knowledge of the equation of state (EOS), we have successfully predicted the mass
and radius of the pulsar. We have demonstrated that these assumptions can yield
physically viable solutions suitable for modelling realistic stars. Specifically, our
results indicate that by systematically adjusting the parameter s, the predicted
masses and radii for the pulsar 4U 1820-30 align well with observational data.
This suggests that our toy model is physically feasible for describing relativistic
anisotropic compact stars, especially since we tested the pulsar 4U 1820 - 30 for
D = 4 and higher dimensions, based on our findings. Fig.1 shows that all three
physical quantities, p, p, and p, are of decreasing nature from the centre to the
surface of the star 4U 1820 -30 in four and higher dimensions. The radial variation
of anisotropy is depicted in Fig.5b for n=2 to n=135, respectively. From this fig,
it was clear that the magnitude of anisotropy is maximum at the star's surface
and zero at the star's centre for all four and higher dimensions. Fig.6b shows
that as the number of space-time dimensions (D) increases, the mass of a compact
object also increases. It may be noted that for usual 4 - D (n=2) the mass is
1.58 M for radial parameter 9.8 km (radius). However, for the same star, the
mass continues to increase as the number of dimensions rises. Thus, we infer that
a compact object can accommodate more mass when observed in higher dimen-
sions. We have also generated a mass-radius (M- R) plot for a fixed surface density
of 4.7-10" g/cm’. The (M- R) curve is plotted with the inclusion of the
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dimensional factor (n). This plot allows us to predict how the maximum mass
of a compact object will change depending on dimension factor. As observed in
Fig.7, the maximum mass increases as the number of space-time dimensions rises.
Notably, for the usual 4 - D space-time (where n=2), the maximum mass predicted
by our model is approximately 2 M and radius around 13 km, which is consistent
with observational data. Therefore, by analyzing the (M- R) curve, the maximum
allowed mass and radius of a compact star can be estimated across different space-
time dimensions. In our present model by setting » =2, one can regain the
modified Finch Skea model proposed earlier by Pandiya et al. [9]. Additionally,
for s=1 the model reduces to the model mentioned in the work [35].
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MOINDOULIMPOBAHHAA 3BE3JHAA MOIEJbL ®UHYA
N CKEA B BbICIIMX M3MEPEHUAX

AJUKAHTUAY, HILJAC?, b.C.PATAHIIAJ®, K.K.BEHKATAPATHAM!

B nmanHoMm wucciemoBaHuu yaydiieHa monenb ITannbu u Tomaca B pamkax
0oJjiee BBICOKMX M3MEPEHUI U MPEANoNIoXKeHO, YTO CUCTeMa aHU30TPOITHA B aH3alle
®unya n Ckea. [lpeacrtaBireHHas MoIeilb WCCIEOYeT pa3IMYHbie (PU3MIecKue
rnmapamMeTpbl B 0oJjiee BBICOKMX M3MEpPEHMSX, BKJIOYAIOIIMX MAaccCy, MJIOTHOCTb
9HEPIYM, paauaibHOE M IONepeyHoe naBjieHue W (akTop aHu3oTponuu. s
aHaju3a 2HEPreTUYECKUX YCJIOBUM paBHOBECUS U YCTOMUMBOCTU B Pa3TUUYHBIX
U3MEPEHMSIX UCIOJIb3yeTcs Tpaduueckuit meton. Kpome Toro, mokasaHo, UTO
Macca KOHKPETHOTO KOMITAKTHOTO OObeKTa YBEJIMUMBAETCS C paAuaIbHBIMM Tapa-
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MeTpaMH 110 Mepe YBEJTMYEHUST pa3MepHOCTH MpOCTpaHCcTBa-BpeMeHn. Kpome Toro,
Ha rpaduke Macca-paguyc (M-R) moka3aHO BIVSTHAE Pa3MEPHOCTHBIX (haKTOPOB
Ha MaKCUMAaJIBHYIO MAacCy M pajuyc, ITOIYCTMMBIE HAIlleil MOIENbIO.

NN B W N =

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

KimtoueBble croBa: modugpuuuposarnnsiii ansay, Punua-Crea: bonee avicokue pazmep-
Hocmu:ypasHeHus noas Junwmelna: menzop Puyuu
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