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Within the framework of higher dimensions, we enhance the model of Pandya and Thomas
and assume that the system is anisotropic in the Finch and Skea ansatz. Our model explores various
physical parameters in higher dimensions, including mass, energy density, radial and transverse
pressures, and the anisotropy factor. We have used graphical technique to analyse the energy
conditions, equilibrium conditions, and stability across different dimensions. Furthermore, the mass
of a particular compact object have shown to increase with radial parameter as space-time dimen-
sions increase. Additionally, by generating a mass-radius (M-R) plot, we demonstrate the influence
of dimensional factor on the maximum mass and radius allowed by our toy model.
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1. Introduction. The space-time geometry of Finch and Skea [1], which

Duorah and Ray [2] first created, has drawn a lot of interest in the modelling

of relativistic compact stars since it produces a well-behaved solution that Delgaty

and Lake [3] later demonstrated to meet all the physical conditions of an actual

star assuming isotropy in pressure. Nevertheless, a number of theoretical studies

have demonstrated that anisotropy may arise in the high density region of compact

star objects. According to Ruderman [4] and Canuto [5], the radial pressure p
r

and the transverse pressure p
t
 do not necessarily need to be equal in the high-

density regime of compact stars is reason for anisotropy. The existence of type-

3A superfluid, rotation, an electromagnetic field, and other factors are among the

many circumstances that Bowers and Liang [6] discussed in detail about the

possibility of anisotropy in stellar interiors. As a result, several researchers have

looked into the Finch-Skea model in relation to matter anisotropy like Hansraj

and Maharaj [7], Ratanpal [8], Pandya [9], Maharaj et al. [10]. In the last few

decades, a significant amount of study has been done to comprehend problems

in astrophysics and cosmology within the context of lower as well as higher

dimensions. In (2+1) dimensions, the Finch-Skea stellar model has been exam-

ined by Benergy [11], Bhar et al. [12]. Along with new physics, the results gained
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in the standard four dimensions are particularly generalised in higher dimensions.

Higher dimensions have their roots in the research conducted in the past by

Kaluza and Klein [13,14]. In order to reconcile gravitational and electromagnetic

interactions, Kaluza and Klein separately initially proposed the idea of an

additional dimension in addition to the standard four dimensions. The model is

basically a five-dimensional extension of Einstein's general theory of relativity,

which is very relevant to both particle physics and cosmology. However, the first

strategy is ineffective. After it was discovered that many intriguing ideas of particle

interactions require more dimensions than four for their consistent formulation,

research into higher dimensional theories was once again resurrected a few decades

ago, and it was greatly expanded. The results of four-dimensional GTR needed

to be generalised to a higher-dimensional setting in order to examine the

consequences of adding one or more additional space-time dimensions to the

theory. In order to address various issues not understood in the usual four

dimensions, a number of cosmological models in higher dimensions have been

discussed in the literature by Shafi [15], Wetterich [16], Wiltshire [17], Accetta

et al. [18], Paul, Mukherjee [19]. Chodos and Detweiler [20,21] first obtained

a higher dimensional cosmological model in this direction. It is conceivable to

recover the standard four-dimensional Newtonian gravity from a five-dimensional

anti-de Sitter space-time in the low energy limit, according to an intriguing

description of gravity provided by Randall and Sundrum [22]. The extra dimen-

sions are not compact.

Liddle et al. [23] examined the effects of extra dimensions on the Kaluza-

Klein model's ability to explain the structure of neutron stars. As an expansion

of the four dimensions, the mass to radius ratio in higher dimensions for a

uniform density star is calculated, and new findings have been published in the

literature by Paul [24].

With some hope for future experimental discoveries, dimensional physics is

currently a busy field of study [25]. By including a dimensionless parameter D

(>0) in the Finch and Skea ansatz, we have expanded the Pandya and Thomas

[9] model in this work and generally assumed that the system is anisotropic. In

the present work the solution of the Einstein field equation for static spherically

symmetric anisotropic matter distribution in higher dimensions.

The paper has been organized as follows. In section 2, for the assumed form

of the space-time metric, the relevant field equations in higher dimensions have

been laid down. The modified Finch and Skea model and solution is discussed

in section 3. In section 4, the exterior region which is the Schwarzschild metric

is matched with the interior to obtain boundary conditions and the model

parameters. In section 5, the physical viability of our model is shown in different

dimensions. Finally, some concluding remarks have been made in section 6.
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2. Field equations in higher dimensions. The Einstein field equation

in higher dimensions is given by

, 8
2

1
  TGg DRR (1)

where G
D
 is the fundamental parameter of interest defined as the gravitational

constant in higher dimensions. In higher-dimensional theories, G
D
 is related to the

standard four-dimensional gravitational constant G by the relation G
D

 = GV
D-4

,

where V
D-4

 is the volume of the extra dimensions, and D represents the total

number of dimensions. The parameter G
D
 is inherently dependent on the

dimensions. As the dimensionality D increases, the corresponding gravitational

constant G
D
 also increases. This relationship highlights the influence of additional

spatial dimensions on the gravitational interaction, making G
D
 a crucial aspect of

the model's framework in higher-dimensional theories. R  is Ricci tensor, R is

Ricci scalar, g  is metric tensor and T  is the energy momentum tensor in

D dimensions.

The Einstein's field equations (EFE) describe how matter and energy influence

the curvature of space-time. In vacuum regions, where no matter or energy is

present, the stress-energy tensor T  is zero. The field equations then simplify

to

. 0
2

1
  RR g

We write the interior space-time metric in higher dimensions of a static spherically

symmetric distribution of anisotropic matter in the form

, 222222
ndrrdedteds  


(2)

where  r  and  r  are the two unknown metric functions, n = D - 2 and

 2
1

22
32

22
11

22
1

2 sinsinsin nnn d...dddd    is a linear element on a

n-dimensional unit sphere in polar coordinates parameterized by the angles

n  ..., , , 21 . The dimension of the space-time is assumed as D = n + 2 so that

for n = 2 it reduces to ordinary 4-dimensional space-time geometry. We follow

the treatment of Maharaj and Maartens [26] and write the energy momentum

tensor of the anisotropic matter in the most general form filling the interior of

the star in the form

  , -   pguupT (3)

where   and p denote the energy-density and isotropic pressure of the fluid,

respectively and u  is the 4-velocity of the fluid. If the energy-momentum tensor

T  is equal to zero, it implies the absence of matter, which in turn means there

is no energy density or pressure. Since energy density and pressure are functions
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of the metric potentials, their absence suggests that there is no mass, leading to

a scenario where the space-time curvature for the particular metric in question

would be non-existent.

The anisotropic stress-tensor   has the form

  , 
3

1
3 








  guCCS (4)

where  0 0, , ,0   eC . For a spherically symmetric anisotropic distribution, S(r)

denotes the magnitude of the anisotropic stress. The non-vanishing components

of the energy-momentum tensor are the following:

.
3

,
3

2
, 3

3
2

2
1

1
0

0 


















S
pTT

S
pTT (5)

Consequently, radial and tangential pressures of the fluid can be obtained as

,
3

21
1 









S

pTpr (6)

,
3

22
2 









S

pTpt (7)

so that

. 
3

tr pp
S


 (8)

Using the space-time metric (2) and energy-momentum tensor (3) of the

distribution the Einstein field equations are subsequently obtained as

  
, 

2

11
8

2

2

2

r

en

r

enn
GD

 



 (9)

  
, 

2

11
8

2

22

r

enn

r

en
pG rD

 



 (10)

      
, 

2

1211
8

2

2
22

r

enn

r

n
epG tD


 








 
  (11)

where, a prime (' ) denotes differentiation with respect to the radial parameter r.

By defining the mass m(r) within a radius r as

 
 

  
  , 

21

2

0

21

 





r
n

n

duuu
n

rm (12)

we get an equivalent description of the system as

    
, 

218
1

231

2










n
D

nr

rmnG
e (13)
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    , 182 3 mnnrpGmrnr rD  (14)

   

       . 121
2

2
4

8
4

2
8

4
38

4

2

3

2

2












 





 enn
r

en
r

pG
n

n

r

n

n
pG

r
SG

r

rD

rDD

(15)

The solution of field equations is discussed in the next section.

3. Modified Finch and Skea model and solution. We use the ansatz

, 1
2

2
2

s

R

r
e 












(16)

where s > 0 is a dimensionless parameter and R is the curvature parameter having

the dimension of length. By introducing the parameter s, one can impose

constraints on the radius to achieve the desired compactness M/R of the model.

By appropriately setting the compactness parameter s for a given mass, it becomes

feasible to tune and adjust the compactness of the system. Note that the ansatz

(16) is a generalization of the Finch and Skea model which can be regained by

setting s = 1.

Using Eq. (16) in Eqs. (9) and (12) we have the following

     

 
, 

1

11121
8

122

222222









 


s

s

D

Rr

RnsRrRrrnn
G (17)

 
 

  
. 11

218 2

2211



































s

D

nn

R

r

nG

nr
rm (18)

To integrate Eq. (14), we use the prescription of Sharma and Ratanpal [27] by

assuming the radial pressure in the form

 
 

, 
1

1
8

1222

22
0







srD

RrR

Rrp
pG (19)

which is a reasonable assumption since the radial pressure vanishes at r = R.

Consequently, the curvature parameter R in our model turns out to be the

boundary of the star.

Substituting Eq. (19) in Eq. (14) we have

   
 

, 
1

1
11

2

1

222

22
0

22

RrnR

Rrrp

r

Rr
n

s










 


 (20)
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and integrating, we get

  , 111exp1
0

2

2

2

2
0

2

2

2
2

0


















































 


r snp

u

du

R

u
n

nR

rp

R

r
Ce

(21)

where C is a constant of integration.

Finally, using Eq. (16), Eq. (19) and Eq. (15), the anisotropy is obtained

as

      

 
     

               
, 

21224

4
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2

2
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1

2

2
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2
3
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3
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
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
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 
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
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


































r
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r
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r

nn
rAnrA

nR

r

rA
n

r

n

n
rArA

Rr

rnsA
rA

r

nn

n

r
SGD

(22)

where

    
 

, 
1

2
2224

222
0

1 





s
RrR

Rrssrp
rA (23)

       
 

, 
1

1
11

2

1

222

22
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2

RrnR

Rrrp
Rr

r

n
rA

s










 


 (24)

  , 1
2

2

3

s

R

r
rA













 (25)

   
 

. 
1

1
1222

22
0

4 





s
RrR

Rrp
rA (26)

Subsequently, the tangential pressure can be obtained from the relation

. 3888 SpGpG rDtD  (27)

Using the above relations, we also obtain ddpr  and ddpt .

Thus, our model has five unknown parameters namely, C, p
0
, R, s and n

which can be fixed by the appropriate boundary conditions as will be discussed

in the following sections. To solve these equations, we must select two of the

unknown model parameters independently (n, s). The remaining model parameters

are then determined through boundary conditions. This approach allows us to solve

Einstein's field equations and accurately model stellar configurations. Once the

unknown model parameters are fully determined, we assess the physical plausibility

of our model by evaluating whether the results align with known stellar properties.

This validation process ensures that our model yields accurate and realistic results.
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4. Exterior space-time and matching conditions. For spherically

symmetric matter distributions, the vacuum solutions of Einstein's field equations

are described by the Schwarzschild solution. This solution characterizes the space-

time outside a non-rotating, spherically symmetric mass and is considered a

vacuum solution because it applies in regions where the energy density is zero,

i.e., outside the mass distribution. While modelling anisotropic compact stellar

objects, the Schwarzschild vacuum solution is relevant only outside the star, where

no matter is present. In the specific context of anisotropic compact stellar models,

the vacuum solution would typically be considered outside the matter distribution,

not within the star itself. To ensure physical consistency, the Schwarzschild

exterior solution must match smoothly with the interior solution at the boundary

of the stellar matter. The exterior region of the sphere is described by the

Schwarzschild metric

, 
2

1
2

1 22
1

1

2

1

2
nn

h
n
h drdr

r

M
dt

r

M
ds 





















 (28)

where M
h
 is related to the mass M as nDh nMGM 16 . The matching

conditions across the boundary surface r = R to be fulfilled are

  , 
2

1
1

2 













n
hR

r

M
e (29)

  , 
2

1
1

2 













n
hR

r

M
e (30)

where m(R) = M
h
 is the total mass enclosed within the radius R.

The above boundary conditions yield

, 
12

2 1
1







s
h

s
n M
R (31)

    . 2111exp 02

0
2

2
0 nps
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dr
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r
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p
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







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



























  (32)

Eq. (31) clearly shows that the compactness of the stellar configuration

M/R will depend on the parameters s and n. This contrasts with the earlier model

developed by Sharma and Ratanpal [27], where s was set to 1, and thus did not

account for this dependence.

5. Physical conditions. A physically acceptable stellar model must satisfy

certain physical conditions

(i) The pressures and density should be positive,  , p
r
, p

t
 > 0.

(ii) Radial pressure p
r
 should be zero at boundary r = R i.e. p

r
 (r = R) = 0.

(iii) The density and pressures should be maximum at the centre and
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monotonically decreasing towards the boundary of the sphere, which requires the

following relations:

  0/ 0  rdrd ,   0/ 0 rr drdp ,   0/ 0 rt drdp  and   0/ 0
22  rdrd ,

  0/ 0
22 rr drpd ,   0/ 0

22 rt drpd  so that the density gradients and pressure

gradients 0/  drd , 0/ drdpr , 0/ drdpt  for Rr 0 .

(iv) The condition that the speed of the sound does not exceed light speed

requires that, 1/0  ddpr , 1/0  ddpt .

(v) It must satisfy strong energy condition (SEC): 02  tr pp .

Also the trace energy condition (TEC), or 02  tr pp , should be positive

throughout the star's interior, as proposed by Bondi [28] and Tello-Ortiz et al.

[29].

To show that the developed model is regular, well-behaved and capable of

describing realistic stars, we have considered the data of the pulsar 4U1820 - 30

whose mass and radius have recently been estimated to be M.M 581  and

R = 9.1 km, respectively [30].

For stability, in general, the adiabatic index

, 





d

dp

p

p r

r

r
(33)

should be greater than 4/3 according [31].

5.1. Bound calculation. In order to examine the unknown parameter p
0
,

we use boundary conditions.

(i) For n = 2 and s = 1.1

• The condition p
t
 (r = R) > 0 if p

0
 < 1.28 and for p

t
 (r = 0) > 0 if p

0
 > 0.

• The expression 1/0  ddpr  (r = R), if 0 < p
0

 < 3.5 and 1/0  ddpr
(r = 0) for 0 < p

0
 < 1.86.

• The expression 1/0  ddpt  (r = R), if 0.43 < p
0

 < 5.1 and 1/0  ddpt
(r = 0) for 0.17 < p

0
 < 1.41.

• The expression of SEC (r = R) > 0, if 0 < p
0

 < 3.53 and SEC (r = 0) > 0,

if p
0

 > 0.

• The expression of TEC (r = R) > 0, if p
0

 > 0 and TEC (r = 0) > 0, if

0 < p
0

 < 1.104. So for n = 2 and s = 1.1, our final bound is 0.43 < p
0

 < 1.1. In this

work, we choose p
0

 = 0.44 for n = 2 and s = 1.1.

(ii) For n = 3 and s = 1.1

• The condition p
t
 (r = R) > 0 if p

0
 < 5.8 and for p

t
 (r = 0) > 0 if p

0
 > 0.

• The expression 1/0  ddpr  (r = R), if 0 < p
0

 < 7.05 and 1/0  ddpr
(r = 0) for 0 < p

0
 < 3.36.

• The expression 1/0  ddpt  (r = R), if 1.08 < p
0

 < 6.9 and 1/0  ddpt
(r = 0) for 0.60 < p

0
 < 3.49.

• The expression of SEC (r = R) > 0, if 0 < p
0

 < 13.4 and SEC (r = 0) > 0,
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if p
0

 > 0.

• The expression of TEC (r = R) > 0, if p
0

 > 0 and TEC (r = 0) > 0, if

0 < p
0

 < 2.2.

So for n = 3 and s = 1.1, our final bound is 1.08 < p
0

 < 2.2. In this paper, we

choose p
0

 = 1.5 for n = 3 and s = 1.1.

(iii) For n = 4 and s = 1.1

• The condition p
t
 (r = R) > 0 if p

0
 < 15 and for p

t
 (r = 0) > 0 if p

0
 > 0.

• The expression 1/0  ddpr  (r = R), if 0 < p
0

 < 11.7 and 1/0  ddpr
(r = 0) for 0 < p

0
 < 5.23.

• The expression 1/0  ddpt  (r = R), if 2.05 < p
0

 < 10.2 and 1/0  ddpt
(r = 0) for 1.3 < p

0
 < 6.6.

• The expression of SEC (r = R) > 0, if 0 < p
0

 < 33.7 and SEC (r = 0) > 0,

if p
0

 > 0.

• The expression of TEC (r = R) > 0, if p
0

 > 0 and TEC (r = 0) > 0, if

0 < p
0

 < 3.68.

So for n = 4 and s = 1.1, our final bound is 2.05 < p
0

 < 3.68. In this paper,

we choose p
0

 = 2.5 for n = 4 and s = 1.1.

(iv) For n = 5 and s = 1.1

• The condition p
t
 (r = R) > 0 if p

0
 < 32 and for p

t
 (r = 0) > 0 if p

0
 > 0.

• The expression 1/0  ddpr  (r = R), if 0 < p
0

 < 17.7 and 1/0  ddpr
(r = 0) for 0 < p

0
 < 7.4.

• The expression 1/0  ddpt  (r = R), if 3.3 < p
0

 < 14.5 and 1/0  ddpt
(r = 0) for 2.3 < p

0
 < 10.8.

• The expression of SEC (r = R) > 0, if 0 < p
0

 < 68.03 and SEC (r = 0) > 0,

if p
0

 > 0.

• The expression of TEC (r = R) > 0, if p
0

 > 0 and TEC (r = 0) > 0, if

0 < p
0

 < 5.52.

So for n = 5 and s = 1.1, our final bound is 3.3 < p
0

 < 5.52. In this paper, we

choose p
0

 = 3.5 for n = 5 and s = 1.1.

We show that our suggested model is physically valid using a range of

parameters and multiple physical tests. We presented graphical representations to

aid in clarity for the pulsar 4U 1820 - 30. The matter density, transverse, and radial

pressure inside the star object should all be positive for a physically plausible

model. The radial pressure ought to disappear at the fluid sphere's surface.

Additionally, there should be a negative gradients of pressure and density through-

out the radius. We examine the impact of energy density and pressures for the

anisotropic distribution of matter with increasing the dimensions of space-time.

The curve of energy densities and pressures with different space-time dimensions

is displayed in Fig.1. These figures demonstrate that pressures and energy density

are both positive, reaching their maximum at the centres of stellar objects and
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monotonically declining towards their surfaces as needed. Whereas the radial

pressure approaches zero at the star's border,   and p
t
 are both positive. In Fig.2

the profiles of density and pressure gradients are displayed. Plots demonstrate that

these are all negative throughout the stellar interior, confirming the monotonically

declining functions of  , p
r
, and p

t
. Here, we can observe that the energy density

and pressure values increase as the dimensions increase and stay positive through-

out the matter distribution. In contrast, it decreases as the radial coordinate r

increases. To ensure the stability of the star, the model must adhere to the

causality requirement. The radial and transverse sound velocities in our model,

which are less than one with different dimensions as well, are represented by Fig.3.

Understanding the nature of matter content in relativity requires that the model

adheres to the strong energy requirement, which is 02  tr pp . Fig.4 displays

the model's energy state and indicates that the model satisfies the energy criteria

because the graph is positive across the matter distribution. The trace energy

condition is also shows at Fig.4. As such, our energy-momentum tensor behaves

nicely.

5.2. Stability criteria.

5.2.1. Adiabatic index. The adiabatic index is described as follows and

given by [32]:
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, 





d

dp

p

p r

r

r
(34)

àn anisotropic, relativistic star configuration's stability is correlated with its adiabatic

index. Any star arrangement will remain stable if the adiabatic index is greater

than 4/3. Fig.6a shows the variation of adiabatic index variation, which makes

it evident that the configurations are stable and the model met the requirements

for every dimension.
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5.2.2. Cracking method. Using Herrera's cracking idea [33], Abreu et al.

[34] provides the following conditions for the model stability of an anisotropic

matter distribution about the stability factor that if the model followers

01 22   rvv , then the model is a potentially stable model and model followers

Fig.4. Variation of (a) (
tr
pp 2 ) and (b) (

tr
pp 2 ) against the radial parameter r.
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01 22   rvv , then the model is potentially unstable. Given that the value of

01 22   rvv  in Fig.5a ranges between 0 and -1, we may conclude that this

model has the potential stable in all dimensions.

6. Discussion. In this work, we have expanded the model originally proposed

by Pandya and Thomas [9] by introducing a dimensionless parameter D (> 0)

into the modified Finch and Skea [1] ansatz and making the general assumption

that the system is anisotropic. It is noteworthy that our modification of the Finch

and Skea ansatz for the metric potential g
rr
 enables a fitting of the theoretically

obtained compactness to the observed compactness of a given star. Additionally,

an intriguing aspect of our approach is that, while it does not require a priori

knowledge of the equation of state (EOS), we have successfully predicted the mass

and radius of the pulsar. We have demonstrated that these assumptions can yield

physically viable solutions suitable for modelling realistic stars. Specifically, our

results indicate that by systematically adjusting the parameter s, the predicted

masses and radii for the pulsar 4U 1820-30 align well with observational data.

This suggests that our toy model is physically feasible for describing relativistic

anisotropic compact stars, especially since we tested the pulsar 4U 1820 - 30 for

D = 4 and higher dimensions, based on our findings. Fig.1 shows that all three

physical quantities,  , p
r
 and p

t
 are of decreasing nature from the centre to the

surface of the star 4U 1820 - 30 in four and higher dimensions. The radial variation

of anisotropy is depicted in Fig.5b for n = 2 to n = 5, respectively. From this fig,

it was clear that the magnitude of anisotropy is maximum at the star's surface

and zero at the star's centre for all four and higher dimensions. Fig.6b shows

that as the number of space-time dimensions (D) increases, the mass of a compact

object also increases. It may be noted that for usual 4 - D (n = 2) the mass is

1.58 M  for radial parameter 9.8 km (radius). However, for the same star, the

mass continues to increase as the number of dimensions rises. Thus, we infer that

a compact object can accommodate more mass when observed in higher dimen-

sions. We have also generated a mass-radius (M - R) plot for a fixed surface density

of 141074 .  g/cm3. The (M - R) curve is plotted with the inclusion of the

 Fig.7. M - R plot.
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dimensional factor (n). This plot allows us to predict how the maximum mass

of a compact object will change depending on dimension factor. As observed in

Fig.7, the maximum mass increases as the number of space-time dimensions rises.

Notably, for the usual 4 - D space-time (where n = 2), the maximum mass predicted

by our model is approximately 2 M  and radius around 13 km, which is consistent

with observational data. Therefore, by analyzing the (M - R) curve, the maximum

allowed mass and radius of a compact star can be estimated across different space-

time dimensions. In our present model by setting n = 2, one can regain the

modified Finch Skea model proposed earlier by Pandiya et al. [9]. Additionally,

for s = 1 the model reduces to the model mentioned in the work [35].
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ÌÎÄÈÔÈÖÈÐÎÂÀÍÍÀß ÇÂÅÇÄÍÀß ÌÎÄÅËÜ ÔÈÍ×À
È ÑÊÅÀ Â ÂÛÑØÈÕ ÈÇÌÅÐÅÍÈßÕ

À.ÄÆÀÍÃÈÄ1, Ø.ÄÀÑ2, Á.Ñ.ÐÀÒÀÍÏÀË3, Ê.Ê.ÂÅÍÊÀÒÀÐÀÒÍÀÌ1

Â äàííîì èññëåäîâàíèè óëó÷øåíà ìîäåëü Ïàíäüè è Òîìàñà â ðàìêàõ

áîëåå âûñîêèõ èçìåðåíèé è ïðåäïîëîæåíî, ÷òî ñèñòåìà àíèçîòðîïíà â àíçàöå

Ôèí÷à è Ñêåà. Ïðåäñòàâëåííàÿ ìîäåëü èññëåäóåò ðàçëè÷íûå ôèçè÷åñêèå

ïàðàìåòðû â áîëåå âûñîêèõ èçìåðåíèÿõ, âêëþ÷àþùèõ ìàññó, ïëîòíîñòü

ýíåðãèè, ðàäèàëüíîå è ïîïåðå÷íîå äàâëåíèå è ôàêòîð àíèçîòðîïèè. Äëÿ

àíàëèçà ýíåðãåòè÷åñêèõ óñëîâèé ðàâíîâåñèÿ è óñòîé÷èâîñòè â ðàçëè÷íûõ

èçìåðåíèÿõ èñïîëüçóåòñÿ ãðàôè÷åñêèé ìåòîä. Êðîìå òîãî, ïîêàçàíî, ÷òî

ìàññà êîíêðåòíîãî êîìïàêòíîãî îáúåêòà óâåëè÷èâàåòñÿ ñ ðàäèàëüíûìè ïàðà-
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ìåòðàìè ïî ìåðå óâåëè÷åíèÿ ðàçìåðíîñòè ïðîñòðàíñòâà-âðåìåíè. Êðîìå òîãî,

íà ãðàôèêå ìàññà-ðàäèóñ (M-R) ïîêàçàíî âëèÿíèå ðàçìåðíîñòíûõ ôàêòîðîâ

íà ìàêñèìàëüíóþ ìàññó è ðàäèóñ, äîïóñòèìûå íàøåé ìîäåëüþ.

Êëþ÷åâûå ñëîâà: ìîäèôèöèðîâàííûé àíçàö Ôèí÷à-Ñêåà: áîëåå âûñîêèå ðàçìåð-

     íîñòè:óðàâíåíèÿ ïîëÿ Ýéíøòåéíà: òåíçîð Ðè÷÷è
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