ՅՍՍՅ ԳԱ Տեղեկագիր

1976

ԽՄԲԱԳՐԱԿԱՆ ԿՈԼԵԳԻԱ

Ա. 8. Ամատունի, Վ. Մ. Հաrությունյան (պատասխանատու խմբագրի տեղակալ), Գ. Մ. Ղաrիթյան (պատասխանատու խմբագիր), Է. Գ. Միrզաբեկյան, Մ. Ե. Մովսիսյան, Ցու. Գ. Շահնազաrյան (պատասխանատու քարտուղար), Է. Գ. Շաrոյան, Գ. Ս. Սահակյան, Հ. Հ. Վարդապետյան

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

А. Ц. Аматуни, В. М. Арутюнян (заместитель ответственного редактора), Г. А. Вартапетян, Г. М. Гарибян (ответственный редактор), Э. Г. Мирзабекян, М. Е. Мовсесян, Г. С. Саакян, Э. Г. Шароян, Ю. Г. Шахназарян (ответственный секретарь).

© Издательство АН Армянской ССР, 1976 г.

Изв. АН Армянской ССР. Физика, 11, 157-163 (1976)

the yes

ИЗЛУЧЕНИЕ ЧЕРЕЗ ДВИЖУЩУЮСЯ ДИЭЛЕКТРИЧЕСКУЮ ПЛАСТИНУ

С. Х. АРУТЮНЯН, Э. Д. ГАЗАЗЯН

Методом функций Грина спределены поля излучения двумерной бесконечной щели при прохождении волн через движущийся дивлектрический слой. В приближении теории дифракции Кирхгофа рассмотрен случай линейно поляризованной волны, когда вектор поляризации перпендикулярен к плоскости падения. Случай плоского волновода с бесконечными фланцами рассмотрен в приближении метода моментов.

Введение

В работах [1, 2] рассматривалось отражение и преломление плоской волны, падающей на движущийся диэлектрический слой. Самостоятельный интерес представляет вопрос о влиянии движения на направление максимума излучения, когда на движущуюся пластину падает пространственнэ ограниченная волна (пучок). В настоящей работе методом функций Грина определены поля излучения двумерной бесконечной щели при прохождении волн через движущийся диэлектрический слой.

Дифракция на щели через движущийся дивлектрический слой конечной толщины (приближение Кирхгофа)

Пусть диэлектрический слой с толщиной $0 \le z \le d$ и постоянной диэлектрической проницаемостью є скользит со скоростью $v = \{v, 0, 0\}$ вдоль оси х, покрывая собой щель, на которую под углом θ_0 из вакуума падает плоская электромагнитная волна

$$E_{y}(n\alpha \underline{a}) = E_{0} \exp\left(ik_{x}x + ik_{z}z\right) \cdot \exp\left(-i\omega t\right)$$

$$B_{y}(n\alpha \underline{a}) = 0$$
(1)

Последняя записана в системе, движущейся со скоростью (— v) относительно слоя. Координаты точек на щели есть $z = 0, -\frac{a}{2} \leqslant x \leqslant \frac{a}{2}$.

В (1) $k_x = k \sin \theta_0$, $k_z = k \cos \theta_0$, $k = \frac{\omega}{c}$, где ω , k и E_0 — частота, волновое число и амплитуда падающего поля, а θ_0 — угол падения волны.

В системе, связанной с движущимся слоем, для полного поля на границе z'=0 получаем выражение

$$E'_{y}(x',0) = 2k'_{z}E'_{0}\exp(ik'_{x}x')\frac{\xi'\cos(\xi'd) - ik_{z}\sin(\xi'd)}{2\xi'k'_{z}\cos(\xi'd) - (\xi'^{2} + k'^{2}_{z})\sin(\xi'd)},$$
 (2)

All and a second second

где $\xi'^2 = \frac{{\omega'}^2}{c^2} z - k_x'^2$, а k_x' , k_z' , ω' и E_{ω}' связаны с k_x , k_z , ω и E_0 преоб-

разованием Лоренца [3]. В приближении Кирхгофа в области $-\frac{a}{2} \le x' \le \frac{a}{2}$ поле определяется согласно (2), а при $|x'| > \frac{a}{2}$ и z' = 0 $E'_{y}(x', 0) := 0.$

Поле Е, вне щели будем искать в следующем виде:

$$E'_{y}(x', z') = \int_{-\infty}^{\infty} G'(x', z'; \xi', 0) E'_{y}(\xi', 0) d\xi'.$$
(3)

Здесь $E'_{y}(\xi', 0)$ — поле на щели $\left(z'=0, -\frac{\alpha}{2} \leqslant x' \leqslant \frac{\alpha}{2}\right)$. Функция Грина G' $(x', z'; \xi', 0)$, определенная согласно (3), при выбранной поляризации падающего поля инвариантна относительно преобразования Лоренца

$$E_{y}(\mathbf{x}, \mathbf{z}) = \int_{-\infty}^{\infty} G(\mathbf{x}, \mathbf{z}; \xi, 0) E_{y}(\xi, 0) d\xi =$$
$$= \int_{-\infty}^{\infty} G(\mathbf{x}', \mathbf{z}'; \xi', 0) (1 - \beta^{2})^{-1/2} [E_{y}'(\xi', 0) + \beta B_{z}'(\xi', 0)] d\xi'.$$
(4)

Заметим, что для выбранной поляризации и направления движения пластины из уравнений Минковского следует, что $B_x = H_x = B_x'$ (всюду принимается $\mu = 1$).

Пользуясь инвариантностью, для фурье-образа g(a, z) функции. Грина

$$G(x, z; \xi, 0) = \int_{-\infty}^{\infty} g(x, z) e^{-i\alpha (x-\xi)} dx$$
(5)

получаем уравнение

$$\frac{\partial^2}{\partial z^2}g(\alpha,z)+\left\{k^2-\alpha^2+\frac{(z-1)}{1-\beta^2}(k+\beta z)^2\right\}g(\alpha,z)=0.$$

Из условий непрерывности тангенциальных компонент E_y и H_x на границе z = d получаются граничные условия для g(a, z)

$$g(\alpha, z)|_{z=0} = 1,$$

$$g(\alpha, z)|_{z=d+0} = g(\alpha, z)|_{z=d-0},$$

$$(5a)$$

$$\frac{\partial}{\partial z}g(\alpha, z)|_{z=d+0} = \frac{\partial}{\partial z}g(\alpha, z)|_{z=d-0}.$$

Окончательно для $g(\alpha, z)$ имеем

$$g(z, z) = \begin{cases} \frac{\Gamma \cos[\Gamma(d-z)] + i\gamma \sin[\Gamma(d-z)]}{\Gamma \cos(\Gamma d) + i\gamma \sin[\Gamma d)}, & 0 \leq z \leq d, \\ \frac{\Gamma \exp(-i\gamma (z-d))}{\Gamma \cos(\Gamma d) + i\gamma \sin(\Gamma d)}, & z \geq d, \end{cases}$$
(56)

где

$$\Gamma = (k^2 - \alpha^2 + \frac{(\varepsilon - 1)}{1 - \beta^2} (k + \beta z)^2)^{1/2}, \quad \gamma = (k^2 - \alpha^2)^{1/2}.$$

Диаграмма излучения, нормированная на максимум излучения при $\beta = 0, \theta_0 = 0, \text{ есгь}$

$$F = \frac{\sin^{2} \left[\frac{ka}{2} (\sin \theta_{0} + \sin \Phi) \right]^{2}}{\left| \frac{ka}{2} (\sin \theta_{0} + \sin \Phi) \right|^{2}} \frac{f^{2} \cos^{2} \Phi}{f^{2} \cos^{2} (kdf) + \cos^{2} \Phi \sin^{2} (kdf)} \times \frac{\xi^{2} \cos^{2} (kd\xi) + \sin \Phi}{4 \xi^{2} \cos^{2} \theta_{0} \cos^{2} (kd\xi) + (\cos^{2} \theta_{0} \sin^{2} (kd\xi))} \times (6)$$

$$\frac{\eta^{2} \cos^{2} (kd\eta) + \sin^{2} (kd\eta)}{4 \eta^{2} \cos^{2} (kd\eta) + (1 + \eta^{2})^{2} \sin^{2} (kd\eta)} \frac{\eta^{2}}{\eta^{2} \cos^{2} (kd\eta) + \sin^{2} (kd\eta)} \frac{\eta^{2}}{\eta^{2} \cos^{2} (kd\eta) + \sin^{2} (kd\eta)} = \frac{\eta^{2}}{\eta^{2} \cos^{2} (kd\eta) + (1 + \eta^{2})^{2} \sin^{2} (kd\eta)} \frac{\eta^{2}}{\eta^{2} \cos^{2} (kd\eta) + \sin^{2} (kd\eta)} \Big\}^{-1}.$$

Здесь Ф — угол наблюдения,

$$\begin{aligned} \xi &= (1 - \beta^2)^{-1/2} \left[\varepsilon \left(1 - \beta \sin \theta_0 \right)^2 - (\sin \theta_0 - \beta)^2 \right]^{1/2} \\ \eta &= (\varepsilon - \sin^2 \theta_0)^{1/2}, \\ f &= \left(\cos^2 \Phi + \frac{(\varepsilon - 1)}{1 - \beta^2} \left(1 - \beta \sin \Phi \right)^2 \right)^{1/2}. \end{aligned}$$

Из (6) видно, что при нормальном падении ($\theta_0 = 0$) и $\beta \neq 0$ при замене угла наблюдения Φ на $-\Phi$ диаграмма оказывается несимметричной. что указывает на зависимость поля излучения от направления и величины скорости движения. В частности, из рассмотрения второго сомножителя в (6) при $\theta_0 = 0$ можно заключить, что при $\beta \rightarrow 1$ главный максимум диаграммы направленности отклоняется в сторону движения при $\varepsilon > 1$ [4] (фактор $\varepsilon - 1 \over 1 - \beta^2 (1 - \beta \sin \Phi)^2$). Таким образом, происходит перераспределение энергии излучения и увлечение излучаемой энергии движущейся средой.

Излучение из открытого конца плоского волновода через движущуюся однородную диэлектрическую пластину (точное решение)

В этом параграфе мы рассмотрим случай излучения из открытого конца, находящегося в вакууме, плоского полубесконечного волновода $(|x| = \frac{a}{2}, z \leqslant 0)$ с бесконечными фланцами в плоскости z=0 через однородную диэлектрическую пластину ($\varepsilon \neq 1$, $0 \leqslant z \leqslant d$), скользящую вдоль фланцев со скоростью $\mathbf{v} = \{v, 0, 0\}$ вдоль оси х. При решении задачи будем следовать методу, разработанному в [5]. Пусть в волноводе распространяется электромагнитная волна с компонентами (E_v, B_x, B_z) , причем ось г является осью симметрии волновода. Функция Грина в этом случае тождественно совпадает с (5).

Приступим к определению поля Е_v(ξ, 0) на раскрыве волновода

$$A\left(z=0, -\frac{a}{2} \leqslant x \leqslant \frac{a}{2}\right).$$
 Представим $E_{y}(\xi, 0)$ в виде разложения
$$E_{y}(\xi, 0) = \sum_{n=1}^{\infty} V_{n}\Phi_{n}(\xi, 0)$$
(7)

по ортонормированным волновым функциям плоского волновода

$$\Phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi n}{a}\left(x-\frac{a}{2}\right)\right), \quad n = 1, 2 \cdots.$$

H_x(x, 0)-компоненту магнитного поля также разложим в ряд

$$H_{x}(x, 0) = \sum_{n=1}^{\infty} Y_{n} V_{n} \Phi_{n}(x).$$
 (8)

Сопряжение (7) и (8) с уравнениями Максвелла приводит к следующему интегральному уравнению:

$$L(\mathbf{x}) = \int_{A} E_{\mathbf{y}}(\xi, 0) \left\{ \sum_{n=1}^{\infty} Y_{n} \Phi_{n}(\mathbf{x}) \Phi_{n}(\xi) + \frac{1}{\omega} P(\mathbf{x}, \xi) \right\} d\xi - 2 Y_{1} \Phi_{1} = 0, \quad (9)$$

где

$$P(x, \xi) = i \frac{\partial}{\partial z} G(x, z; \xi, 0) \Big|_{z=0} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Gamma \frac{\gamma + i\Gamma \operatorname{tg}(\Gamma d)}{\Gamma + i\gamma \operatorname{tg}(\Gamma d)} e^{-i\pi (x-\xi)} d\alpha.$$
(9a)

Пользуясь методом моментов, сведем решение интегрального уравнеяия (9) к решению системы алгебраических уравнений [6]. Если вместо (7) взять конечный ряд

$$E_{y}(\xi) = \sum_{p=1}^{N} V'_{p} \Phi_{p}(\xi)$$
(10)

 $(\Phi_p(\xi))$ — те же ортонормированные волновые функции волновода), который является решением интегрального уравнения (9), то каждая из функций $\Phi_p(\xi)$ ортогональна ему. Это приводит к следующей системе алгебраических уравнений для V_p' :

$$2 Y_{1}^{2}_{1q} = \sum_{p=1}^{N} A_{qp} V'_{p}, \quad p, q = 1, 2, \cdots, N.$$
 (11)

Решение системы уравнений (11) для определения коэффициентов разложения V'_p проводится с помощью ЭВМ. Поэтому целесообразно провести возможное упрощение матричных элементов A_{qp} . В (9 α) разобьем область интегрирования по α следующим образом. Выберем такое доста-

160

точно большое число M, чтобы $|\Gamma d| \ge M$ и одновременно имело бы местослабое неравенство $\Gamma^2 < 0$. Тогда оценки на «хвостах» области интегрирования приводят к упрощению интеграла

$$\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}e^{-i\alpha(x-z)}\sqrt{k^2-\alpha^2+\frac{z-1}{1-\beta^2}(k+\beta\alpha)^2}\,d\alpha=$$

$$=\frac{1}{2}\sqrt{\frac{1-\beta^2\varepsilon}{1-\beta^2}}e^{i\frac{(x-\varepsilon)\beta k(\varepsilon-1)}{1-\varepsilon\beta^2}}\left(\frac{\partial^2}{\partial x^2}+\frac{k^2\varepsilon(1-\beta^2)^2}{(1-\varepsilon\beta^2)^2}\right)H_0^{(2)}\left(\frac{k\sqrt{\varepsilon}(1-\beta^2)}{(1-\varepsilon\beta^2)}\right)$$

и для матричного элемента A ap получается выражение

$$\begin{aligned} A_{\eta p} &= Y_{p} \delta_{p \eta} + \frac{1}{\pi k a} \int_{-M}^{M} \frac{\Gamma\left(\gamma - \Gamma\right)\left(1 - i \operatorname{tg}\left(\Gamma d\right)\right)}{\Gamma + i \gamma \operatorname{tg}\left(\Gamma d\right)} \frac{\frac{\pi q}{a} \left(e^{-i a a} - 1\right)}{a^{s} - \left(\frac{\pi q}{a}\right)^{2}} \frac{\frac{\pi p}{a} \left(e^{i a a} - 1\right)}{a^{2} - \left(\frac{\pi p}{a}\right)^{2}} + \\ &+ \frac{1}{k} \left(\frac{1 - s\beta^{2}}{1 - \beta^{2}}\right)^{1/2} \left[H_{0}^{(2)}\left(\frac{k \sqrt{s} \left(1 - \beta^{2}\right)}{1 - s\beta^{2}} s\right) F_{q p}\left(s\right) \exp\left(i\frac{\beta k \left(s - 1\right)}{1 - s\beta^{2}} s\right) ds, \end{aligned}$$

где

$$F_{qp}(s) = \begin{cases} \frac{(-1)^{p+q}+1}{q^2-p^2} \frac{1}{\pi} \left[\left\{ \frac{k^2 \varepsilon \left(1-\beta^2\right)^2}{(1-\varepsilon\beta^2)^2} - \left(\frac{\pi p}{a}\right)^2 \right\} q \sin\left(\frac{\pi p}{a}s\right) - \left\{ \frac{k^2 \varepsilon \left(1-\beta^2\right)^2}{(1-\varepsilon\beta^2)^2} - \left(\frac{\pi q}{a}\right)^2 \right\} p \sin\left(\frac{\pi q}{a}s\right) \right], \quad q \neq p, \\ \frac{1}{a} \left[\left\{ \frac{k^2 \varepsilon \left(1-\beta^2\right)^2}{(1-\varepsilon\beta^2)^2} - \left(\frac{\pi p}{a}\right)^2 \right\} (a-s) \cos\left(\frac{\pi p}{a}s\right) + \left\{ \frac{k^2 \varepsilon \left(1-\beta^2\right)^2}{(1-\varepsilon\beta^2)^2} + \left(\frac{\pi p}{a}\right)^2 \right\} \frac{\sin\left(\frac{\pi p}{a}s\right)}{\left(\frac{\pi p}{a}\right)}, \quad q = p. \end{cases}$$

Перейдем в (4) к цилиндрическим координатам $x = \rho \sin \Phi$, $z = d = -\rho \cos \Phi$ и введем обозначения $a = k \sin w$, $\gamma = k \cos w$. Проведя, далее, методом перевала интегрирование по w, можно определить поля на больших расстояниях от раскрыва:

при
$$\Phi \neq \frac{\pi}{2}$$

 $E_y(p, \Phi) \sim F(\Phi) \cdot (-k) \sqrt{\frac{2\pi}{kp}} e^{-l\left(\frac{kp-\frac{\pi}{4}}{4}\right)} + \sum_p \operatorname{res} w_p,$ (13)
при $\Phi = \frac{\pi}{2}$

$$E_{y}(\rho, \Phi) \sim F''\left(\frac{\pi}{2}\right) k \sqrt{\frac{\pi}{a}} \left(k\rho\right)^{-\frac{3}{2}} e^{-i\left(k\rho - \frac{\pi}{4}\right)} + \sum_{p} \operatorname{res} w_{p}.$$
(14)

Здесь

$$\mathscr{E}_{y}(k\sin w) = \int_{-\infty}^{\infty} \mathscr{E}_{y}(\xi, 0) e^{-ik\sin w\xi} d\xi$$

£y(5, 0) определяется по формулам (10), (12),

$$F(\Phi) = \cos w E_{w}(k \sin w) \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \times \\ \times \left\{ \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \cos \left(kd \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \right) + i \cos w \sin \left(kd \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \right) \right\}^{-1} \right|_{w = \Phi};$$

$$\begin{aligned} \operatorname{res} w_{\rho} &= ik \cos w_{\rho} E_{y}(k \sin w_{\rho}) \left[\cos^{2} w_{\rho} + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w_{\rho})^{2} \right]^{1/2} \times \\ &\times e^{-ik\rho \cdot \cos (w_{\rho} - \Phi)} \left\{ \frac{d}{dw} \left\{ \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \times \right. \\ &\times \cos\left(kd \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \right) + i \cos w \times \\ &\times \sin\left(kd \left[\cos^{2} w + \frac{\varepsilon - 1}{1 - \beta^{2}} (1 + \beta \sin w)^{2} \right]^{1/2} \right) \right\}^{-1} \Big|_{w = w_{\rho}}, \end{aligned}$$

а wp определяется из уравнения

$$\left[\cos^{2}w + \frac{\varepsilon - 1}{1 - \beta^{2}}(1 + \beta \sin w)^{2}\right]^{1/2} \cos\left(kd\left[\cos^{2}w + \frac{\varepsilon - 1}{1 - \beta^{2}}(1 + \beta \sin w)^{2}\right]^{1/2}\right) + i\cos w \sin\left(kd\left[\cos^{2}w + \frac{\varepsilon - 1}{1 - \beta^{2}}(1 + \beta \sin w)^{2}\right]^{1/2}\right) = 0.$$

Можно показать, что слагаемые ГеS w_p соответствуют поверхностным волнам и вклада в диаграмму излучения не дают. Отметим также, что при $\beta=0$, т. е. в случае неподвижного относительно волновода слоя, результаты совпадают с результатами [5].

Поступила 30.V.1975

ЛИТЕРАТУРА

- 1. С. Н. Столяров. Изв. вузов, Раднофизика, 10, 284 (1967).
- 2. C. Yeh, K. F. Casey. Phys. Rev., 144, 665 (1966).

3. Л. Д. Ландау, Е. М. Лифшиц. Теория поля, Изд. Наука, М., 1967.

4. I. Lerche. Astrophys. J., 191, 753 (1974).

5. Chen Pong Wu. IEEE Trans. AP-17, 733 (1969).

6. Л. В. Канторович, В. Н. Крылов. Приближенные мстоды высшего анализа, М., 1962.

ፈԱՌԱԳԱՅԹՈՒՄԸ ՇԱՐԺՎՈՂ ԳԻԷԼԵԿՏՐԻԿ ՇԵՐՏԻ ՄԻՋՈՎ

Ս. Ք. ՀԱՐՈՒԹՅՈՒՆՑԱՆ, Է. Դ. ԳԱԶԱԶՅԱՆ

Գրինի ֆունկցիաների մեննոդով դիտարկված են ճառագայնման դաշտերը շարժվող դիէլենարիկ շերտի վրա էլեկտրամադնիսական ալիքների անկման դեպքում։ Ալիքը ճեղքի վրա ընկնե՞ լու դեպքը դիտարկված է ԿիրՏոֆի մոտավորունյամբ։ Հարն կիստանվերջ ալիքատարի խնդրում։ ատացվել է լուծում՝ մոմենտների մեննոդի մոտավորունյամբ։

RADIATION THROUGH MOVING DIELECTRIC SLAB

S. Ch. HARUTYUNYAN, E. D. GAZAZYAN

The diffraction by the s'it at the passage of radiation through the moving dielectric slab is considered. The expressions for the pattern are derived by Green's method in Kirchhoff approximation, and the plane semiinfinite waveguide is considered; in moments method approach.

РАСПАД ЭКСИТОНА НА ПОВЕРХНОСТНЫХ НЕОДНОРОД-НОСТЯХ ТОНКОЙ (КВАНТУЮЩЕЙ) ПОЛУПРОВОДНИКОВОЙ ПРОВОЛОКИ

К. ВАРІСЕНЗЕЕ, Э. М. КАЗАРЯН

Рассмотрен распад экситона большого радпуса в случайном поле поверхностных неоднородностей в тонкой (квантующей) полупроводниковой проволоке с круглым сечением. Усредненная по случайному полю вероятность распада выражается через бинарную корреляционную функцию поверхностных неоднородностей. В пороговом приближении явно вычислена вероятность распада в случае гауссовского распределения поверхностных неоднородностей. Приведены численные оценки вероятности распада для полупроводниковой проволоки InSb.

Введение

В последнее время широко изучаются физические и, в частности, кинетические свойства квазичастиц в пространственно-ограниченных средах (пленках и проволоках), в которых существенны квантовые размерные эффекты [1, 2]. Это обусловлено, с одной стороны, возрастающим техническим применением тонких пленок и проволок, с другой — чисто научным аспектом, так как в последних проявляются новые специфические явления, не наблюдаемые в массивных образцах. В связи с этим важное значение имеют вопросы рассеяния и распада экситона на различных несовершенствах кристаллической структуры, как, например, на примесях, фононах, поверхностных неоднородностях и т. д.

Вопросы кинетики экситонов в массивных образцах рассматривались еще в 60-ых годах (см., напр., [3, 4]). Но в последнее время особое внимание уделяется вопросам поведения квазичастиц в случайном поле [5—10], примерами которого является поле, создаваемое беспорядочным распредслением примесных центров в сильно легированных полупроводниках, и поле неидеальной поверхности. В настоящей работе рассматривается новый механизм распада экситона, а именно, распад экситона в случайном поле поверхностных неоднородностей в тонких полупроводниковых проволоках.

1. Волновые функции и потенциал возмущения

Искомая вероятность распада экситона вычисляется обычным методом теории квантовых переходов. В качестве волновых функций выбираются решения иевозмущенной задачи, в которой проволока в поперечном направлении аппроксимируется бесконечно глубокой потенциальной ямой [2]. Предполагается, что экситон является одномерным и радиус его больше радиуса проволоки

$$r_{akc} > r_0,$$

где Го — раднус идеально гладкой проволоки.

(1)

Для волновой функции и энергии экситона, находящегося до распада в основном состоянии, имеем

$$\psi_{\text{sec}} = S^{-1} \left(\frac{2}{Lr_B}\right)^{1/2} J_1^{-2} (\lambda) J_0 \left(\lambda \frac{r_1}{r_0}\right) J_0 \left(\lambda \frac{r_2}{r_0}\right) |\beta| \exp\left(-\frac{|\beta|}{r_B}\right) \exp\left(ik_0 z\right), \qquad (2)$$

$$E_{\text{SRC}} = \frac{\hbar^2 \lambda^2}{2} \left(\frac{1}{m_{1\perp} r_0^2} + \frac{1}{m_{2\perp} r_0^2} \right) + \frac{\hbar^2 k_0^2}{2 M} - E_B, \qquad (3)$$

где $E_B = \mu e^4/2 \epsilon^2 h^2$ — энергия связи экситона, $r_B = \epsilon h^2/\mu e^2$ — боровский радиус экситона в среде, $S = \pi r_0^2$ — сечение, L - длина проволоки, k_0 — квазиимпульс экситона, λ — первый корень функции Бесселя нулевого порядка, ϵ — диэлектрическая проницаемость среды,

$$\mu = \mu_{\parallel}, \qquad \mu_i = m_i/M \quad (i = 1, 2),$$

$$\mu^{-1} = m_1^{-1} + m_2^{-1}, \qquad \rho = z_1 - z_2, \qquad (4),$$

$$M = m_1 + m_2, \qquad z = \mu_1 z_1 + \mu_2 z_2.$$

Индекс 1 соответствует электрону, индекс 2 — дырке.

Волновая функция конечного состояния берется в виде произведения волновых функций свободного электрона и дырки [2].

$$\psi_{k} = (SL)^{-1} \int_{|l_{1}|+1}^{-1} (l_{s_{1}}^{|\prime_{1}|}) \int_{|l_{2}|+1}^{-1} (l_{s_{2}}^{|l_{2}|}) \int_{|l_{1}|} \left(\lambda_{s_{1}}^{|l_{1}|} \frac{r_{1}}{r_{0}}\right) \times \\ \times \int_{|l_{2}|} \left(\lambda_{s_{2}}^{|l_{2}|} \frac{r_{2}}{r_{0}}\right) \exp\left[i \left(l_{1}\varphi_{1} + l_{2}\varphi_{2}\right)\right] \exp\left[i \left(\beta z + \gamma \rho\right)\right],$$
(5)

а энергия есть

$$E_{k} = \frac{\hbar^{2} \gamma^{2}}{2M} + \frac{\hbar^{2} \gamma^{2}}{2\mu} + \frac{\hbar^{2} (\lambda_{s_{1}}^{l_{1}})^{2}}{2m_{1\perp} r_{0}^{2}} + \frac{\hbar^{2} (\lambda_{s_{1}}^{l_{1}})^{2}}{2m_{2\perp} r_{0}^{2}}, \qquad (6)$$

где $\beta = q_1 + q_2$, $\gamma = \mu_2 q_1 - \mu_1 q_2$, q_1 , q_2 - квазиимпульсы электрона и дырки, $l_l = 0, \pm 1, \pm 2, \cdots$ - магнитное квантовое число, $\lambda_{s_l}^{|l_i|}$ - значение s_l -корня функции Бесселя $J_{|l_l|}(x)$, $s_i = 0, 1, 2, \cdots$, i = 1, 2.

Потенциал взаимодействия экситона с поверхностными неоднородностями вычисляется в первом приближении теории возмущений. Представим радиус сечения проволоки в виде

$$r = r_0 + \Delta(z, \gamma), \tag{7}$$

где $\Delta(z, \varphi)$ — случайная функция поверхностных неоднородностей. Как известно [1], для наблюдения квантовых размерных эффектов необходимо, чтобы

$$|\Delta(z, \varphi)| \ll r_0. \tag{8}$$

С учетом (7) и (8) для потенциала возмущения получаем

$$\dot{U} = -\hbar^{2}\lambda^{2}r_{0}^{-3}\left[\frac{\Delta(z_{1}, \varphi_{1})}{m_{1\perp}} + \frac{\Delta(z_{2}, \varphi_{2})}{m_{2\perp}}\right]$$
(9)

К. Вайсензее, Э. М. Казарян

2. Вероятность распада

Для вычисления матричного элемента перехода M_{12} удобно (см. [5]) случайную функцию $\Delta(z, \varphi)$ представить в виде разложения Фурье. В результате для M_{12} имеем

$$M_{12} = A_0 \sum_{k} \delta_{k_0-k, \beta} \Delta(k, 0) \left[\frac{1-\chi_2^2}{m_{1\perp}(1+\chi_2^2)^2} + \frac{1-\chi_1^2}{m_{2\perp}(1+\chi_1^2)^2} \right], \quad (10)$$

-где

$$\chi_{1, 2} = r_B(\gamma \mp \mu_{1, 2} k),$$

$$_0 = 2^{5/2} \hbar^2 \lambda^2 \pi r_B^{1/2} L^{-3/2} r_0^{-3}.$$
(11)

Заметим, что вклад в M_{12} дают только состояния с $\lambda_{s_1}^{|l_1|} = \lambda_{s_2}^{|l_2|} = \lambda$.

A

Входящая в (10) б-функция обеспечивает закон сохранения импульса

$$\beta = k_0 - k = q_1 + q_2. \tag{12}$$

Закон сохранения энергии

$$\frac{\hbar^2 k_0^2}{2M} - E_B = \frac{\hbar^2 \beta^2}{2M} + \frac{\hbar^2 \gamma^2}{2\mu}$$
(13)

.вместе с законом сохранения импульса приводят к следующему условню .распада экситона

$$E_{\text{KHH}} \geqslant E_B,$$
 (14)

откуда получаем ограничения на допустимые значения импульса

$$k_1 \leqslant k \leqslant k_2, \tag{15}$$

где

$$k_{1, 2} = k_0 \mp (k_0^2 - \alpha^2)^{1/2},$$

$$\alpha = r_B^{-1} (M/\mu)^{1/2}.$$

Будем считать, что совокупность экситонов в проволоке образует одномерный идеальный газ с максвелловским распределением начальных скоростей. Тогда после суммирования по β и γ с учетом (13), а также усреднения по скоростям экситонов для вероятности распада получаем выражение

$$\overline{W} = A \left(\int_{-\infty}^{-\alpha} + \int_{+\alpha}^{+\infty} \right) dk_0 \exp\left(-\eta k_0^2\right) \times$$

$$dk \left| \Delta (k, 0) \right|^2 [f(\gamma_0, k) + f(\gamma_0, k)] [\alpha^2 \omega^2 - (k - k_0)^2]^{1/2}.$$
(16)

$$f(\gamma, k) = \left[\frac{1 + 1 - \chi_2^2}{m_{1\perp} (1 + \chi_2^2)^2} + \frac{1 - \chi_1^2}{m_{2\perp} (1 + \chi_1^2)^2}\right]^2,$$

$$\omega^2 = (E_{\text{KHR}}'E_B) - 1,$$

$$\gamma_{1, 2} = \pm [\mu_1 \mu_2 (\alpha^2 \omega^2 - (k_0 - k)^2)]^{1/2},$$

 $\eta = E_B/a^2k_B T$, T — температура, k_B — постоянная Больцмана.

Поскольку средняя кинетическая энергия экситонов порядка $k_B T/2$, большинство экситонов, испытывающих распад, имеет энергии, близкие к E_B . Число же экситонов с большими скоростями экспоненциально мало. Это дает возможность полагать, что

$$\omega^2 \ll 1 \tag{17}$$

и считать ω малым параметром. Таким образом, интервал интегрирования по k получается очень узким, и вероятность распада можно вычислить в пороговом приближении, применяя теорему о среднем.

Наконец, усредним W по случайному полю. Усредненное произведение

$$\langle \Delta(z_1, \varphi_1) \Delta(z_2, \varphi_2) \rangle = G(z_1, z_2, \varphi_1, \varphi_2)$$

есть бинарная корреляционная функция случайного поля поверхностных неоднородностей. Будем считать случайное поле однородным и изотропным, т. е.

$$G(z_1, z_2, \varphi_1, \varphi_2) = G(|z_1 - z_2|, |\varphi_1 - \varphi_2|) = G(\xi, \vartheta).$$

Окончательно для усредненной вероятности распада в единицу времени получается выражение

$$\langle \overline{W} \rangle = \frac{4A}{\pi} \int_{\alpha}^{\infty} \exp\left(-\gamma_{k_{0}}^{2}\right) f(k_{0}) \left\{ \int_{-\infty}^{+\infty} \int_{0}^{2\pi} G(\xi, \vartheta) \cos\left(k_{0}\xi\right) d\xi d\vartheta \right\} dk_{0}, \quad (18)$$

где

$$f(k_0) = f'(k_0) + f'(k_0),$$

$$f^{\pm}(k_0) = \left[\frac{1 - (\omega \pm \mu_2 r_B k_0)^2}{m_{1\perp} [1 + (\omega \pm \mu_2 r_B k_0)^2]^2} + \frac{1 - (\omega \mp \mu_1 r_B k_0)^2}{m_{2\perp} [1 + (\omega \mp \mu_1 r_B k_0)^2]^2}\right]^2$$

3. Случай гауссовского распределения поверхностных. неоднородностей

Для дальнейшего исследования $\langle W \rangle$ необходимо задать явный вид корреляционной функции. Так как образование поверхностных неоднородностей можно считать результатом совместного и аддитивного действия большого числа независимых факторов, для усреднения по полю можновыбрать гауссовскую корреляционную функцию [11]

$$G\left(\xi, \theta\right) = G_0 \exp\left(-\frac{\xi^2}{\xi_0^2} - \frac{\vartheta^2}{\vartheta_0^2}\right), \qquad (19)$$

где ξ. и to - радиусы корреляции.

В этом случае получаем

$$\langle \overline{W} \rangle = A\xi_0 \vartheta_0 r_0^3 \tau^2 \Phi\left(\frac{2\pi}{\vartheta_0}\right) \int_{\alpha}^{\infty} f(k_0) \exp\left[-\frac{k_0^3}{4} \left(4\eta + \xi_0^2\right)\right] dk_0, \quad (20)$$

яде $\Phi(x)$ — интеграл вероятности [12], а $\tau = (G_0/r_0^2)^{1/2}$ — малый параметр. Интеграл по k_0 вычисляется с учетом приближения (17). Принимая в

выражении для $f(k_0) = 0$, $k_0 \cong a$, f(a) можно вынести за знак интеграла. В результате получается выражение

$$\langle \overline{W} \rangle = B(T) \tau^{2} r_{0}^{-4} f(\sigma) \frac{Erfc \left[\frac{1}{2} \left(4 \frac{E_{B}}{k_{B}T} + \alpha^{2} \xi_{0}^{2} \right)^{1/2} \right]}{\left(4 \frac{E_{B}}{k_{B}T} + \alpha^{2} \xi_{0}^{2} \right)^{1/2}}, \quad (21)$$

яде

$$B(T) = 8 \lambda^4 \hbar^3 a \xi_0 \vartheta_0 \pi^{-3/2} \Phi\left(\frac{2\pi}{\vartheta_0}\right) (k_B T)^{-1} ,$$

$$f(\sigma) = \left(\frac{1 - \sigma^{-1}}{m_{1\perp} (1 + \sigma^{-1})^2} + \frac{1 - \sigma}{m_{2\perp} (1 + \sigma)^2}\right)^2, \quad \sigma = m_1/m_2.$$

Ориентировочные оценки, проделанные для тонкой проволоки InSb, для которой принято, что $m_1 = 0.013 m_0$, $m_2 = 0.5 m_0$ (m_0 — масса свободного электрона) и $\varepsilon = 16$, при $r_0 = 2 \cdot 10^{-6}$ см, $T = 8.5^{\circ}$ К, $\tau = 0.03$, $t_0 = 10^{-6}$ и $\vartheta_0 = 0.5$ приводят к результату

$$\langle \overline{W} \rangle \sim 6 \cdot 10^6 \ cen^{-1}$$
, (22)

а для $r_0 = 10^{-6}$ см получается

$$<\overline{W}> \sim 9,4\cdot 10^7 \ ce\kappa^{-1}$$
. (23)

Ереванский государственный университет

Поступила 7.IV.1975

ЛИТЕРАТУРА

- 1. Б. А. Тавгер, В. Я. Демиховский. УФН, 96, 61 (1968).
- 2. Б. А. Тавгер, М. Д. Блох, Е. Л. Фишман. ФММ, 33, 1137 (1972).
- 3. А. А. Липник. ФТТ, 1, 726 (1959); ФТТ, 1, 36 (1959); ФТТ, 2, 2044 (1960); ФТТ, 3, 2322 (1961).
- 4. Э. С. Качлишвили. ФТТ, 3, 2141 (1961).
- 5. В. Л. Бонч-Бруевич, В. Д. Искра. ФТП, 5, 1948 (1971).
- 6. В. Л. Бонч-Бруевич. Сб. Статистическая физика и квантовая теория поля, Изд. Наука, М., 1973, стр. 337.
- 17. Э. М. Казарян, А. А. Киракосян. Препринт ЕГУ-72-05, Ереван, 1973.
- В. А. А. Киракосян. Изв. АН АрмССР, Физика, 9, 429 (1974).
- 9. А. А. Киракосян, Э. М. Казарян, К. Т. Габриелян. Изв. АН АрмССР, Физика, 9, 328 (1974).
- 40. А. А. Киракосян, Р. Шепке. Изв. АН АрыССР, Физика, 10, 463 (1975).
- Ф. Г. Басс, И. М. Фукс. Рассеяние воли на статистически неровной поверхности, Изд. Наука, М., 1972.
- 42. Е. Янке, Ф. Эмде, Ф. Леш. Специальные функции, Изд. Наука, М., 1968.

ԷՔՍԻՏՈՆԻ ՏՐՈՀՈՒՄԸ ԲԱՐԱԿ (ՔՎԱՆՏԱՑՆՈՎ) ԼԱՐԻ ՄԱԿԵՐԵՎՈՒՑԹԱՑԻՆ ԱՆՀԱՄԱՍԵՌՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

4. ՎԱՅՍԵՆՉԵԵ, Է. Մ. ՂԱԶԱՐՅԱՆ

Գիտարկված է մեծ շառավղով էբսիտոնի տրոรումը բարակ (ըվանտացնող) շրջանային կտրվածրով կիսանաղորդչային լարի մակերևույթային անճամասեռությունների վրա։ Ըստ պատանական դաշտի միջինացված տրոքման հավանականությունն արտաճայտվում է մակերևույթային անճամասեռությունների բինար կոռելյացիոն ֆունկցիայի միջոցով, Շեմային մոտավորությամբ բացանայտ տեսրով հաշվված է տրոքման ճավանականությունը մակերևույթային աննամասեռությունների պառայան բաշխման դեպրում։ Բերված է թվային գնաճատական InSb կիսանաղորդչային լարի համար։

EXCITON DECAY ON SURFACE INHOMOGENEITIES OF A THIN (QUANTIZED) SEMICONDUCTOR WIRE

K. WEISENSEE, E. M. KAZARYAN

The large-radius exciton decay in the random field of surface inhomogeneities of a thin (quantized) semiconductor wire with a circular cross-section is considered. The probability of exciton decay averaged over the random field is expressed by means of the binary correlation function of the surface inhomogeneities. In the threshold approximation the decay probability for the case of Gauss distribution of surface inhomogeneities is explicitly calculated. The numerical estimate of the decay probability for *InSb* semiconductor wire is given.

A production of the second second

ВОЗМОЖНОСТЬ НАБЛЮДЕНИЯ РЯБИ НАМАГНИЧЕННОСТИ В ТОНКИХ ФЕРРОМАГНИТНЫХ ПЛЕНКАХ НА СФОКУСИРО-ВАННЫХ ЭЛЕКТРОННОМИКРОСКОПИЧЕСКИХ ИЗОБРАЖЕНИЯХ

Я. М. ПОГОСЯН, Д. ПЭЦОЛЬД, М. А. ЧАЛАБЯН, Т. А. ПОГОСЯН

Предлагается новая методика электронномикроскопического наблюдения тонкой магнитной структуры ферромагнитных пленок с помощью метода заслонки. Показано, что изображение магнитной структуры, полученное методом расфокусирования, можно имитировать наложением микрофотографий с определенным сдвигом их друг относительно друга, причем эти микрофотографии должны соответствовать определенным направлениям подведения заслонки.

1. Введение

В настоящее время одним из объективных методов исследования магнитной структуры в тонких ферромагнитных пленках является лоренцова электронная микроскопия, интенсивное развитие которой способствовало созданию микромагнитной теории тонких пленок (теория ряби намагниченности [1, 2]). Обычно для исследования тонкой магнитной структуры применяется лишь одна из двух разновидностей лоренцовой микроскопии метод расфокусирования [3], в то время, как другой метод — метод заслонки [4] — не нашел применения.

В предыдущей работе [5] нами было показано, что именно метод заслонки может быть успешно применен в комплексных исследованиях кристаллической и доменной структур ферромагнитных пленок, тогда как в методе расфокуспрования получение какой-либо информации о кристаллической структуре пленок не представляется возможным не только для случая ферромагнитных веществ, но и в случае неферромагнитных образцов [6].

В настоящей работе обсуждается возможность применения метода заслонки для исследования тонкой магнитной структуры в ферромагнитных пленках.

2. Возможность наблюдения ряби намагниченности методом заслонки

Магнитную структуру тонких пленок можно наблюдать на сфокусированном электронномикроскопическом изображении небольшим смещением апертурной диафрагмы объективной линзы [4]. При этом образец устанавливается в держателе в приподнятом положении «высокого контраста» и освещается сходящимся электронным пучком [5]. В этом случае распределение интенсивности на изображении $I'=I/I_0$ (где I_0 — интенсивность в данной точке при обычном положении диафрагмы, а I — интенсивность в той же точке, когда апертурная диафрагма смещена) зависит от взаимного расположения направления подведения заслонки и вектора намагниченности в домене и дается выражением [5]

$$I' = \frac{1}{2} \left(1 - \frac{\Delta_0'}{\Delta_r} - \frac{\beta f}{\Delta_r} \sin \varphi \right), \tag{1}$$

где $\beta = (4\pi e \ It)/mv$ — угол лоренцова отклонения, **J** — вектор намагниченности, расположенный под углом φ к внутренней нормали к краю заслонки (е и m — заряд и масса электрона, а v — скорость электронов), Δ'_0 расстояние «тени» края заслонки на задней фокальной плоскости объектива от центра дифракционного пятна с радиусом Δr , f — эффективное фокусное расстояние объективной линзы, t — толщина пленки.

Рассмотрим случай, когда в доменах имеются локальные колебания вектора намагниченности на угол $\pm \Delta \varphi$ (рябь намагниченности). Последнее приводит к изменению формы первичного пучка. Это иллюстрируется на рис. 1, где схематически приводится вид дифракционного пятна как в случае отсутствия ряби (рис. 1*a*), так и при наличии ряби (рис. 1*b*) для

Рис. 1. Схематическое изображение формы дифракционных пятен: а—идеальная пленка, b—реальная ферромагнитная пленка; светлая стрелка указывает среднее направление вектора намагниченности, пунктир—локальные колебания вектора намагниченности, Δφ—угол локального отклонения вектора намагниченности от среднего направления, → — направление отклонения электронов из-за силы Лоренца, соответствующей вектору намагниченности в среднем направлении, ▶! — направление подведения заслонки.

случая двух антипараллельных доменов. Как видно из рис. 1b, при наличии локального колебания вектора намагниченности дифракционные пятна принимают вид эллипса с большей осью, параллельной оси легкого намагничивания. Очевидно, для того, чтобы разрешить тонкую магнитную структуру, приводящую к изменению формы пятна, заслонка должна быть подведена к центру дифракционного пятна в направлении оси легкого намагничивания. Это и следует из формулы (1), которая при учете локального колебания вектора намагниченности на угол $\pm \Delta \phi$ принимает вид

$$I' + \Delta I'_{\text{ps6b}} = \frac{1}{2} \left(1 - \frac{\Delta'_0}{\Delta r} - \frac{\beta f}{\Delta r} \sin \left(\varphi \pm \Delta \varphi \right) \right). \tag{2}$$

При малых значениях $\Delta \phi$ и $\Delta'_0 = 0$ (заслонка подведена на задней фокаль-

Я. М. Погосян и др.

ной плоскости объектива до центра пятна) из выражений (1) и (2) можно получить

$$\Delta I_{p\pi\delta b} = \pm \frac{1}{2} \frac{\beta f}{\Delta r} \cos \psi \cdot \Delta \varphi.$$
(3)

Видно, что изменение интенсивности изображения из-за ряби намагниченности максимально при $|\cos \varphi| = 1$, т. е. когда диафрагма смещается вдоль оси легкого намагничивания ($\varphi = 0$, π).

Возникает вопрос, в состоянии ли современные электронные микроскопы создавать контраст изображения, достаточный для разрешения* небольших отклонений вектора намагниченности, обусловленных рябью?

Поскольку радиус дифракционного пятна равен $\Delta r = \beta_0 f$, где $\beta_0 = \beta_{\text{конд.}} + \beta_{\text{крист.}} (\beta_{\text{конд.}} - \text{угол расходимости пучка из-за конечного размера освещающего пятна первого конденсора, <math>\beta_{\text{крист.}} - \text{угол расхо$ $димости, обусловленный размерами кристаллитов, причем в силу <math>\beta_{\text{крист.}} \ll \beta_{\text{конд.}}$ имеем $\beta_0 \approx \beta_{\text{конд.}}$), то из (3) вытекает условие, необходимое для наблюдения ряби намагниченности,

$$\frac{1}{2} \frac{\beta}{\beta_0} \Delta \varphi_{\min} \ge 0, 1. \tag{4}$$

Оценки показывают, что при работе на электронном микроскопе высшего класса, где практически можно получать $\beta_0 \sim 0.5 \cdot 10^{-4}_{paa}$, и наблюдении образцов—пленок железа—этим методом можно разрешить области с колебаниями $\Delta \phi \sim 1.5^{\circ}$.

Эдесь следует также учесть возможные ошибки, вносимые прибором. Одна из ошибок обусловлена неровностями края заслонки величиной б, приводящими к изменению интенсивности изображения данной точки на величину

$$\Delta I_{\delta} = \frac{1}{\beta_0 f_0} \frac{h+M}{h^2+h+M} \delta.$$
 (5a)

Эдесь f_0 — фокусное расстояние объектива при обычном положении образца «высокого разрешения», $h=R/f_0$ — параметр, показывающий насколько приподнят образец из положения «высокого разрешения», R — расстояние плоскости пленки от средней плоскости объектива, $M=1-(1+1/M_0)/M_0$ параметр, связанный с увеличением объективной линзы, M_0 — увеличение объектива при $f=f_0$. Кроме того, контраст изображения меняется также с отходом наблюдаемой области от параксиального положения, поскольку, как было отмечено в [5], расстояние «тени» заслонки Δ'_0 зависит от координат (ρ , α) наблюдаемой точки, вследствие чего интенсивность на изображении меняется от центра до края области радиусом ρ_{max} на величину

$$\Delta J_{p_{\max}} = \frac{1}{\beta_0 f_0} \frac{1}{h^2 + h + M} \rho_{\max}.$$
 (56)

Аля определевности считаем, что две области на изображении разрешаются по контрасту, если их интенсивности I'_1 и I'_2 удовлетворяют условию $|I'_1 - I'_2| > 0,1$.

172

Tim

Для выявления контраста ряби намагниченности требуется, чтобы эти «приборные ошибки» не превышали 20% контраста, возникшего из-за ряби намагниченности, т. е. чтобы $|\Delta I'_{e}| + |\Delta I'_{p_{max}}| \leq 0,2 |\Delta I'_{p_{R}\delta_b}|$. Отсюда получаем достаточное условие для наблюдения ряби намагниченности

$$\Delta \varphi_{\min} \geq \frac{0.2}{\beta f_0} \frac{1}{h^2 + h + M} (\varphi_{\max} + (h + M) \delta).$$
(6)

Оценки этих величин для микроскопа JEM - 100U, на котором проводились все экспериментальные исследования данной работы, с помощью условий (4) и (6) показывают, что для разрешения ряби намагниченности с $\Delta \phi_{\min} \sim 1,5^{\circ}$ необходимо работать в режиме первого конденсора с наименьшим пятном и приподнять образец на $R \sim 1$ см, т. е. установить в положение «высокий контраст» (третье положение) в держателе образца.

3. Экспериментальные исследования и обсуждение результатов

Исследования проводились на «монокристаллических» пленках железа толщиной 500÷800 Å, полученных методом вакуумной конденсации на сколе каменной соли. При описанном выше режиме установления образца и подвода апертурной диафрагмы в направлении оси легкого намагничивания на фоне средней контрастности наблюдается полосовая картина. Период этих полос примерно порядка длины волны ряби намагниченности по Гофману [1]. На рис. 2 приведены снимки, полученные соответственно при обычном положении апертурной диафрагмы (рис. 2а) и при срезе пучка в направлении оси легкого намагничивания (рис. 2b). Видно, что наблюдаемый контраст действительно обусловлен наличием локального колебания вектора намагниченности. Эффект мог быть более наглядным, если бы мы убрали общий фон, обусловленный кристаллической структурой, налагая на позитив рис. 2a негатив рис. 2b. Преимущество наблюдения рябн намагниченности на сфокусированных электронномикроскопических изображениях очевидно: здесь на кристаллическую структуру накладывается магнитная структура, и возможность получения информации эдесь безусловно больше.

Рассмотрим теперь связь между сфокусированным и расфокусированным изображениями магнитной структуры. Для наглядности нами взят участок пленки С 90°-ой доменной границей. При прохождении электронного пучка через этот участок в режиме сфокусированного изображения и подведении срезающей заслонки в направлении, соответствующем рис. За (для наглядности в верхней части рис. 3 светлыми стрелками показано среднее направление вектора намагниченности в соответствующих доменах, а сплошными стрелками — среднее направление силы Лоренца по отношению к направлению подведения заслонки), проходящий пучок r будет экранироваться соответственно случаю рис. 1b, и на среднем фоне будет наблюдаться рябь намагниченности, тогда как пучок l проходит беспрепятственно и соответствующая ему область дает свое обычное изображение. Если 373-2

173

Рис. 2. Микрофотографии с одного и того же участка пленки железа: а-при обычном положении апертурной диафрагмы, b-заслонка подведена в направлении оси легкого намагничивания в даниом домене.

теперь вывести срезающий нож и подвести его под углом 90° по отношению к предыдущему положению, то, как видно из рис. 3b, контрастность картины изменится и рябь намагниченности будет наблюдаться в пучке l. Полученные изображения для этих двух случаев приведены на рис. 4a и b. Эдесь на темных участках также видны колебания, что объясняется нестрогим соответствием направления подведения заслонки с направлением оси легкого намагничивания. Кроме того, здесь, по-видимому, сказывается и форма края заслонки — в нашем случае ножом служила круглая апертурная диафрагма диаметром 20 мкм. Рассмотрим теперь этот же участок пленки на расфокусированном изображении. Как видно из рис. 3c, этот режим отличается от предыдущих (сфокусированных) тем, что здесь на экран попадают пучки от обеих областей (r и l) пленки. При этом наблюдаемое изображение на плоскости S'' будет представлять собой наложение картин, соответствующих режимам рис. 3a и b, смещенных друг относительно друга на величину 2s, которая зависит от степени расфокусировки z'.

На рис. 4d приведена микрофотография доменной структуры, полученная в режиме расфокусирования. На справедливость принятой нами выше схемы указывает рис. 4c, который был получен наложением смещенных

Рис. 3. Схематическое объяснение принципа обнаружения тонкой магнитной структуры: а и b соответствуют методу заслонки, с—методу расфокусирования; S—плоскость образца, S'—плоскость сфокусированного изображения образца, S''—плоскость расфокусированного изображения(т. е. плоскость, смещенная относительно S' вдоль оптической оси на величниу z'), F—задняя фокальная плоскость объектива (соответствующая сфокусированному режиму работы микроскопа), F'—фокальная плоскость, соответствующая расфокусированному режиму, 2s—величина, характеризующая степень перекрытия пучков r и l из-за расфокусирования (то же, что и наблюдаемая ширина границ при данной стспени расфокусировки).

Рис. 4. Микроснимки магнитной структуры с 90°-ми доменными границами, полученные методом заслонки (a, b) наложением двух изображений при подведении заслонки с противоположных сторон (c) и при расфокусированном режиме работы микроскопа (d), увеличение×1000. Как видно, наложение двух изображений a и b со смещением обеих пластинок навстречу друг другу воспроизводит недофокусированное изображение d. друг относительно друга рис. 4a и b. Рис. 4c фактически воспроизводит картину при недофокусировке.

В свете вышесказанного тонкая магнитная структура пленок, наблюдаемая методом расфокусирования в электронном микроскопе, есть некоторый усредненный эффект, возникающий в результате наложения некоторого числа колебаний интенсивности с определенными сдвигами фаз (т. е. перемещением их друг относительно друга, обусловленным степенью расфокусирования). Анализ тонкой магнитной структуры, наблюдаемой в электронном микроскопе методом расфокусирования, с этой точки зрения можеть стать предметом отдельного обсуждения.

Ереванский государственный университет

Поступила 16.IV.1975

ЛИТЕРАТУРА

1. H. Hoffman. J. Appl. Phys., 35, 1790 (1964); Phys. Kond. Materie, 2, 32 (1964).

2. H. Rother. Z. Phys., 179, 229 (1964).

3. H. W. Faller, M. E. Hale. J. Appl. Phys., 31, 238 (1960).

4. H. W. Fuller, M. E. Hale. J. Appl. Phys., 31, 1699 (1960).

5. Я. М. Погосян и др. Ияв. АН АрмССР, Физика, 10, 291 (1975).

6. F. Thon. Z. Naturforschg., 20a, 154 (1965).

PԱՐԱԿ ՖԵՐՈՄԱԳՆԻՍԱԿԱՆ ԹԱՂԱՆԹՆԵՐԻ ՄԱԳՆԻՍԱԿԱՆ ԾՓԱՆՔԻ ԴԻՏՄԱՆ ՀՆԱՐԱՎՈՐՈՒԹՅՈՒՆԸ ՖՈԿՈՒՍԱՑՎԱԾ ԷԼԵԿՏՐՈՆԱՄԱՆՐԱԴԻՏԱԿԱՑԻՆ ՊԱՏԿԵՐՆԵՐԻ ՎՐԱ

S. U. ՊՈՂՈՍՅԱՆ, Դ. ՊԵՑՈԼԴ, U. U. ՉԱԼԱԲՏԱՆ, Թ. Ա. ՊՈՂՈՍՑԱՆ

Աշխատանջում առաջարկված է նոր մեթոդ ֆերոմագնիսական թաղանթների նուրը մագնիսական կառուցվածջը դիտելու համար, որը հիմնված է էլեկտրոնային մանրադիտակում էլեկտրոնային փունջը կտրելու վրա։ Յույց է տրված, որ ապաֆոկուսացման մեթոդով դիտվող նուրը մագնիսական կառուցվածջի պատկերը կարելի է վերարտադրել այս եղանակով ստացված մի ջանի պատկերների վերադրումով, որոնջ որոշակիորեն շեղված են միմյանց նկատմամը։

THE POSSIBILITY OF MAGNETIZATION RIPPLE OBSERVATION IN THIN FERROMAGNETIC FILMS BY MEANS OF IN-FOCUS ELECTRON MICROSCOPIC IMAGES

Ya. M. POGOSYAN, D. PÄTZOLD, M. A. CHALABYAN, T. A. POGOSYAN

The in-focus method of the electron microscopic observation of a magnetization ripple in thin ferromagnetic films is proposed. It is shown, that out-focus image of the magnetic structure might be imitated by the overlap of some in-focus patterns.

ЗАВИСИМОСТЬ МАГНИТНЫХ СВОЙСТВ ЦИЛИНДРИЧЕСКИХ МАГНИТНЫХ ПЛЕНОК ОТ ТЕМПЕРАТУРЫ ОТЖИГА

К. А. ЕГИЯН, А. А. НАГАПЕТЯН, Р. Г. АРУТЮНЯН, А. Б. КАКОЯН

Исследовано влияние отжига без приложения внешнего магнитного поля в интервале температур 250—400°С на магнитные свойства цилиндрических магнитных пленок. Показано увеличение коэрцитивной силы, поля и дисперсии анизотропии при температурах выше 300°С. Обсуждаются механизмы, влияющие на формирование магнитных свойств пленок.

Интерес к исследованию влияния отжига на магнитные свойства тонких пленок обусловлен двумя причинами. Во-первых, такие исследования дают сведения о формировании магнитных свойств и, во-вторых, позволяют определить температурный интервал их практического использования.

В настоящей работе исследовано влияние отжига без приложения магнитного поля в интервале температур 250—400°С на коэрцитивную силу (H_c) , поле (H_k) и дисперсию (φ_{so}) анизотропии, магнитоупругий параметр (η) цилиндрических магнитных пленок (ЦМП), осажденных на аморфный подслой из сплава никель—фосфор. Методика получения образцов и измерения магнитных параметров дана в работе [1]. Средний состав определялся по значению магнитоупругой постоянной [2], и в исследованных пленках содержание Ni менялось в интервале 80—81%. Нулевой магнитоупругой постоянной соответствует состав с 80,38% содержанием Ni, так что исследовались пленки как с положительной, так и с отрицательной магнитострикцией.

Отжиг пленок производился в капсуле из железа армыо при температурах 250—400°С. Перед отжигом пленки размагничивались. Температура отжига поддерживалась с точностью до ± 5°. Измерения свойств пленок проводились при комнатной температуре. Данные исследований приводятся на рис. 1—3.

Отметим нанболее характерные изменения параметров пленок. Отжиг при температуре 250°С (данные на рисунках отсутствуют) не приводит к заметным изменениям магнитных параметров; наблюдается лишь небольшое (в пределах 0,1 э) уменьшение H_c . Средний состав пленок остается практически постоянным.

Увеличение температуры отжига до 275°С приводит к увеличению среднего содержания железа в пленках на 0,2%. Такая же тенденция наблюдается и при отжиге при более высоких температурах; изменения среднего состава остаются на уровне 0,2%, но с ростом температуры отжига растет скорость протекания процесса. В процессе отжига при 275°С усиливается тенденция к уменьшению H_c . В среднем уменьшение H_c составляет 0,2 э. H_b и φ_{so} при эгой температуре практически постоянны.

На начальных стадиях отжига при 300°С так же, как и при отжиге при низких температурах, наблюдается небольшой спад H ,, сопровождае-

Рис. 1. Зависимость среднего состава от продолжительности отжига: при 275°С, $1 - \eta < 0$, $2 - \eta > 0$; при 300°С, $3 - \eta < 0$, $4 - \eta > 0$, при 350°С, $5 - \eta < 0$, $6 - \eta > 0$; при 400°С, $7 - \eta < 0$.

мый дальнейшим его ростом. При этой температуре наблюдается заметное увеличение *H_k*.

Отжиг при 350°С приводит к активизации процессов увеличения H_c и H_k . Так, H_c магнитострикционных пленок после часового отжига при 350°С увеличивается на 0,8—1 э, а отжиг аналогичных пленок при 300°С за это же время приводит к уменьшению H_c на 0,1 э. Нужно отметить, что при одинаковом исходном абсолютном значении η для ЦМП с $\eta > 0$ H_c увеличивается больше, чем в случае $\eta < 0$, что, видимо, связано с тем, что в процессе отжига магнитоупругая постоянная ЦМП с $\eta > 0$ увеличивается по абсолютной величине, в то время как у пленок с $\eta < 0$ она уменьшается. Отжиг при 350°С приводит к резкому увеличению φ_{so} , в связи с чем точность измерения H_k и φ_{so} резко падает. Исходя из этого при 400°С проводился лишь отжиг первоначально немагнитострикционных пленок в течение 1 часа. Как видно из рис. 1 и 2, при этой температуре происходит резкий рост η и H_c .

Изменения статических характеристик ЦМП приводят к росту разрядных токов записи и разрушения и уменьшению зоны работоспособности уже

Рис. 2. Зависимость H_c от продолжительности отжига: при 300°С, 1— $\eta \sim 0$, 2— $\eta < 0$, 3— $\eta > 0$; при 350°С, 4— $\eta \sim 0$, 5— $\eta < 0$, 6— $\eta > 0$; при 400°С, 7— $\eta \sim 0$.

при 300°С. ЦМП, отожженные при этой температуре и выше, не годны для использования в запоминающих устройствах.

Анализ экспериментальных данных указывает, что изменения свойсть ЦМП при отжиге связаны с протеканием в пленках нескольких физических процессов. В области температур до 275°С протекают процессы, связанные с выравниванием структурных неоднородностей, в частности, неоднородностей по составу, десорбцией водорода и других легколетучих компонент электролиза. Известно, что процесс осаждения ЦМП связан с возникновением граднента состава по толщине пленки, а в случае шероховатых пленок—локальных неоднородностей состава [3]. Отжиг приводит к частичному выравниванию градиента состава пленок. На протекание этого процесса указывает изменение среднего магнитоупругого параметра ЦМП. Как показано в [4], такое выравнивание состава должно приводить к увеличению среднего значения п из-за нелинейной зависимости магнитоупругого параметра от состава. Процесс этот диффузионный, на что указывает резкое

179

К. А. Егнян и др.

Рис. 3. Зависимость H_k (сплошные линии) и φ_{80} (пунктчрные линии) от продолжительности отжига: при 300°С, $1 - \eta < 0$, $2 - \eta > 0$ (H_k), $3 - \eta < 0$, $4 - \eta > 0$ (φ_{80}); при 350°С, $5 - \eta < 0$, $6 - \eta > 0$ (H_k), $7 - \eta < 0$, $8 - \eta > 0$ (φ_{80}); при 400°С, $9 - \eta \sim 0$ (H_k), $10 - \eta \sim 0$ (φ_{50}).

увеличение скорости его протекания с температурой отжига. Процесс гомогенизации, естественно, будет сопровождаться уменьшением изотропных локальных внутренних напряжений, а также десорбцией захваченных при электролизе газов, что должно приводить к уменьшению внутренней энергии образца и Н,, как это и наблюдается в эксперименте.

Начиная с 300°С на этот процесс накладываются по крайней мере еще два процесса — снятие магнитострикционных напряжений и рост величины кристаллов. На рис. 4 представлены электронограммы пленок в зависимости от температуры отжига. Как видно из рис. 46, после отжига при 300°С в пленках происходят незначительные структурные превращения. При более высоких температурах происходит сужение дифракционных максимумов, а после отжига при 400°С они становятся точечными (рис. 4*в*), что свидетельствует о весьма бурном росте величины кристаллов. Это обстоятельство должно привести к росту дисперсии анизотропии, подавлению процессов вращения в направлении оси трудного намагничивания и, в конце концов, пленка должна потерять свои анизотропные свойства.

180

В интервале 300—350°С в ШМП наблюдается наибольшее увеличение H_c и H_k , причем рост этот зависит от конечной величины магнитоупругой постоянной и не зависит от его знака. Этот процесс может быть связан с механизмом снятия магнитострикционных напряжений [5]. При отжиге пленок

Рис. 4. Электронограммы пленок: а-начальная; б-после отжига при 300°С; в-после отжига при 400°С.

в них возникают магнитострикционные напряжения, которые при высокой температуре могут быть сняты, если диффузионная подвижность атомов высока. При низких температурах, когда подвижность резко падает, эта структура сохраняется, что приводит при перемагничивании в направлении, перпендикулярном к направлению остаточной намагниченности, к дополнительной магнитоупругой энергии, т. е. к возникновению дополнительной компоненты одноосной анизотропии. Величина ее при прочих равных условнях будет определяться конечным значением магнитоупругой постоянной пленки. С целью уточнения влияния этой компоненты при температуре 300°С проводился длительный отжиг (порядка 100 часов) ряда пленок. Выбор температуры 300°С определяется тем, что при этой температуре влияние структурных изменений (размеров кристаллитов) незначительно. Действительно, как видно из рис. 5, изменения как H_c , так и H_s связаны с конечной величиной магнитоупругой постоянной и в области $\eta \sim 0$ изменений практически нет.

Таким образом, поведение магнитных параметров ЦМП при отжиге определяется влиянием ряда структурных параметров — микронапряжениями, размерами кристаллитов, структурными неоднородностями, причем в зависимости от интервала температур давлеют разные механизмы. До тем-

пературы 200—250°С отжиг без магнитного поля в течение десятков часов не приводит к существенному изменению свойств пленок.

Поступила 20.V.1975

ЛИТЕРАТУРА

- 1. А. А. Едигарян и др. Изв. АН АрмССР, Физика, 6, 34 (1971).
- 2. T. R. Long. J. Appl. Phys, 37, 1470 (1950).
- 3. J. R. Kench, S. B. Schuldt. J. Appl. Phys., 41, 3338 (1970).
- 4. H. Shukovsky, T. Turnbull. IEEE Trans. Magnet., 4, 59 (1968).
- 5. F. West. J. Appl. Phys., 35, 1827 (1964).

ԳԼԱՆԱՑԻՆ ՄԱԳՆԻՍԱԿԱՆ ԹԱՂԱՆԹՆԵՐԻ ՄԱԳՆԻՍԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ԿԱԽՈՒՄԸ ՋԵՐՄԱՄՇԱԿՄԱՆ ՋԵՐՄԱՍՏԻՃԱՆԻՑ

Կ. Ա. ԵՂՅԱՆ, Ա. Ա. ՆԱՀԱՊԵՏՑԱՆ, Ռ. Հ. ՀԱԲՈՒԹՅՈՒՆՅԱՆ, Ա. Բ. ԿԱԿՈՑԱՆ

Այիսատանջում ուսումնասիրված է արտաթին մադնիսական դաշտի բացակայության դեպրում 250-400°C ջերմաստինանների ինտերվալում ջերմամշակման ազդեցությունը գլանային մադնիսական թաղանքների մադնիսական հատկությունների վրա։ Ցույց է տրված 3000C րարձր ջերմաստինաններում կոէրցիտիվ ուժի, անիզոտրոպիայի դաշտի և դիսպերսիայի մեծացումը։ Քննարկվում են թաղանքների մադնիսական հատկությունների ձևավորման վրա ազդող մեխանիդմենըը։

THE DEPENDENCE OF MAGNETIC PROPERTIES OF CYLINDRICAL MAGNETIC FILMS ON ANNEALING TEMPERATURE

K. A. EGIYAN, A. A. NAHAPETYAN, R. H. HARUTUNYAN, A. B. KAKOYAN

The influence of annealing on the properties of cylindrical magnetic films in the temperature range from 250° to 400°C has been investigated in the absence of external magnetic field. It is shown, that the coercive force, the dispersion and the anisotropy field increased at temperatures above 300°C. The mechanisms responsible for the magnetic properties of films are discussed.

ВЛИЯНИЕ ВНУТРЕННИХ НАПРЯЖЕНИЙ НА МАГНИТНЫЕ СВОЙСТВА ПЛЕНОК MnBi

м. А. СОЛИМАН, В. А. ДЖИДАРЯН

Исследована кинетика возникновения внутренних напряжений в пленках MnBi в зависимости от условий их получения на стеклянных и слюдяных подложках. Показано, что при конденсации Bi в пленке воязикают сжимающие напряжения, при последующем же осаждении Mn и диффузионном отжиге напряжения меняют свой энак. Приведенные магнитные характеристики пленок MnBi указывают на аналогичность хода изменения коврцитивной силы и внутренних напряжений в зависимости от исходной температуры получения MnBi, что, в свою очередь, свидстельствует о существенной роли внутренних напряжений в формпровании коврцитивной силы пленок MnBi,

Известно, что при составе ферромагнитных пленок, отличном от состава, соответствующего нулевой магнитострикции, наличие внутренних напряжений индуцирует магнитострикционную энергию, аддитивно накладывающуюся на энергию исходной анизотропии. В случае пленок MnBi этот вклад, по-видимому, весьма ощутим, ибо наряду со сравнительно высоким значением коэффициента магнитострикции ($\lambda_s = -5 \cdot 10^{-4}$) здесь вектор намагниченности устанавливается перпендикулярно к поверхности образца благодаря условию $K_{\rm кр.} > 4\pi I$ ($K_{\rm кр.}$ — константа кристаллографической анизотропии, I — намагниченность насыщения). Поэтому возникающие большие внутренние напряжения при получении пленок могут вызвать локальное изменение энергии $E_{\kappa} \pm E_{\lambda}$, а следовательно, и изменение магнитных характеристик этого класса пленок.

Целью настоящей работы является исследование возникновения внутренних напряжений в процессе получения пленок MnBi и влияния этих напряжений на магнитные характеристики.

Пленки MnBi были получены на свежем сколе слюды, а также на покровных стеклах микроскопа путем вакуумной конденсации Ві, а затем Mn (50: 50 ar %) и последующего диффузионного отжига. Измерение внутренних напряжений (σ) осуществлялось интерференционным методом [1]. Сущность метода заключается в следующем: пучок параллельного монохроматического света падает на оптический клин, состоящий из плоскопараллельной кварцевой пластины, покрытой полупрозрачным слоем серебра, и подложки, представляющей скол монокристаллической слюды или предметное стехло микроскопа, покрытое непрозрачным слоем алюминия. При наличии воздушного зазора между пластинами пучки света, претерпевая отражение от соответствующих поверхностей и в дальнейшем накладываясь, интерферируют в соответствующих участках, где выполняется условие $2d_i = n_i \lambda$ ($2d_i$ — разность хода между лучами в соответствующих точках, n_t — порядок интерференции, λ — длина волны монохроматического света). При этом возникают интерференционные максимумы, обычные кольца Ньютона, диаметр которых меняется при деформации подложки. обусловленной возникновением внутренних напряжений в пленке MnBi как при их осаждении, так и в процессе диффузионного отжига [2]. Выбранная нами оптическая система вакуумной установки позволяет получить интерференционные картины вне камеры непрерывно как при конденсации *Bi* и *Mn*, так и в процессе диффузионного отжига. Измерение величины возникших внутренних напряжений производилось по методу работы [1]. Процесс диффузионного отжига в зависимости от технологии получения пленок *MnBi* (температуры подложки *T_n* при осаждении пленок *Bi+Mn*, толщины пленок *t*, температуры диффузионного отжига *T*_{отж.} и т. д.) предварительно контролировался измерением электросопротивления (*R*), а также интерференционными измерениями по насыщению соответствующих зависимостей от температуры или времени.

На рис. 1 приведены типичные графики зависимости величины внутренних напряжений для пленок MnBi, полученных на стеклянной подложке при $T = 100^{\circ}$ С и имеющих толщину 600 Å, от времени (a) и $\Delta R =$ $= \frac{R_T}{R_0}$ (R_0 — исходное значение) от температуры при отжиге для пленок, осажденных при $T_{\mu} = 40$, 60 и 80°С (б). Отсюда видно, что оптимальным

Рис. 1. Графики зависимости величины от времени отжига (а) и электросопротивления от температуры отжига (б) пленок MnBi, полученных настеклянной подложке.

режимом диффузионного отжига является $T_{otm.} = 200^{\circ}$ С с продолжительностью отжига 2 часа. Принимая этот режим постоянным, нами исследовалась кинетика возникновения внутренних напряжений в процессе получения пленок MnBi в зависимости от исходной температуры осаждения Bi+Mn. На рис. 2 приведены типичные зависимости для пленок, осажденных на стеклянную подложку. Рис. 2 разделен на три области: область А характеризует нагрев до температуры диффузионного отжига (скорость нагрева $\sim 2^{\circ}$ С/мин), область В — процесс диффузионного отжига в течение 2 часов при температуре 200°С, а область С — последующее охлаждение до комнатной температуры. Из приведенных на рис. 2 зависимостей видно, что при конденсации висмута возникают сжимающие напряжения, а про-

Рис. 2. Динамика возникновення величины о в процессе получения пленок *MnBi* толщиной 600 Å на стеклянной подложке: по осн абсцисс снизу отложена температура, сверху—зремя; знаки ▲ соответствуют состоянию пленки после конденсации висмута, большие сплошные кружки—после последующей конденсации *Mn*.

цесс отжига сопровождается возникновением растягивающих напряжений, и конечное состояние полученной пленки диктуется исходной температурой осаждения висмута. Это очень наглядно иллюстрируется на рис. 3, 4 для пленок, осажденных на слюдяной и стеклянной подложках; на этих же рисунках приведены измеренные магнитооптическим методом Фарадея значения коэрцитивной силы пленок MnBi, полученных при соответствующих режимах. Из рис. 4 видно, что в случае стеклянной подложки экспериментальные кривые $\sigma(T_n)$ и $H_c(T_n)$ имеют ярко выраженные минимумы. соответствующие температуре подложки ≈ 100 °C. В случае слюды (рис. 3) также наблюдается минимум, но менее явный, и он смещен в область более низких температур. Однако для обоих случаев примечательно то обстоятельство, что характер зависимостей напряжения и коэрцитивной силы аналогичен. Последнее наводит на мысль о доминирующей роли внутренних напряжений в формировании коэрцитивной силы пленок MnBi.

Рис. 3. Зависимость коэрцитивной силы *Hc* и величины возникших напряжений о от температуры подложки при осаждении *Bi* и *Mn* на слюдяной подложке.

Электронномикроскопические исследования показали, что пленки Bi, сконденсированные на аморфной подложке при температуре 20—60°С, имеют поликристаллическую структуру с размерами кристаллитов 100— 200 Å; начиная с температуры 80°С появляется осевая текстура с осью «С», перпендикулярной к поверхности подложки [3], сопровождающаяся ростом кристаллитов. В случае осаждения пленок Bi на слюдяной подложке уже при температуре подложки 40—50°С образовавшаяся пленка имеет осевую текстуру с размерами кристаллитов в несколько сот ангстрем; последующий рост температуры подложки приводит к росту размеров кристаллов.

Хотя принято считать, что осажденные пленки MnBi монокристалличны, однако фактически они состоят из крупных блоков—кристаллов с размерами порядка 1000 Å, кристаллографические оси которых расположены в пределах небольшого телесного угла [3]. В отличие от случая слюдяной М. А. Солиман, В. А. Джидарян

подложки для пленок, осажденных на стеклянной подложке, этот угол может быть в несколько раз больше, что, по-видимому, и является одной из основных причин повышенной коэрцитивной силы пленок, осажденных на стеклянной поверхности.

Пленки, осажденные на стеклянной подложке при низкой температуре, в процессе диффузионного отжига из поликристаллического состояния переходят в текстурированное, по-видимому, путем рекристаллизации, что и является причиной наведения больших внутренних напряжений (нисходящая ветвь кривой на рис. 4): в случае же слюдяной подложки в этом интервале температур, поскольку исходная пленка была уже текстурирован-

Рис. 4. То ње, что на рис. 3, для пленки MnBi, осажденной на стеклянной подложке.

ной, диффузионный отжиг не сопровождается рекристаллизацией. Поэтому в этой области температур (см. рис. 3) резкого минимума не наблюдается.

С повышением исходной температуры конденсации пленки Bi получаются более совершенными, и диффузионный отжиг сопровождается лишь ростом размеров кристаллитов. В этом случае принимая, что пленка жестко закреплена к подложке, естественно ожидать, что возникающие внутренние напряжения будут меньше, чем в случае, когда диффузионный отжиг наряду с ростом кристаллитов сопровождается рекристаллизацией.

Доменная структура и процесс перемагничивания пленок MnBi наблюдались на поляризационном микроскопе МИН—8, снабженном дополнительным электромагнитом, обеспечивающим однородное магнитное поле с максимальной амплитудой 10 кэ в зоне расположения исследуемого образца с размерами 18×18 мм². На рис. 5 приведена серия микрофотографий. иллюстрирующая характер перемагничивания пленок MnBi, осажденных на слюдяной и стеклянной подложках. Видно, что, действительно, в случае ис-

188

Рис. 5. Процесс перемагничивания (эффект Фарадея) пленок MnBi, осажденных на подложке из слюды (I) и на подложке из стекла (II) при $T_{\pi} = 90^{\circ}$, H_c (I) = 1,3 кэ, H_c (II) = 2,9 кз; (I) – (a) H = 0.8 кэ, (б) H = 1.2 кз, (в) H = 1.6 кэ; (II) – (а) H = 2.0 кз, (б) H = 2.9 кз, (в) H = 5.0 кз; (× 150).

Рис. 6. Процесс перемагничивания пленок MnBi с большой величиной внутренних напряжений на подложке из стекла при $T_{\rm II} = 120^{\circ}$ С, $H_c = 5,8$ кэ (серия I): (a) H = 4,7 кэ, (б) H = 6 кэ, и процесс перемагничивания пленок MnBi, полученных на подложке из слюды с неоднородной поверхностью, Hc = 1,8 кэ (серия II): (a) H = 1,3 кэ, (б) H = 4,0 кэ; (\times 150).

пользования подложки из слюды полученные пленки более однородны, чем пленки, осажденные на стеклянной подложке. Если в первом случае перемагнячивание осуществляется возникновением зародыша новой фазы и дальнейшим ростом этой фазы, то во втором случае возникших зародышей несравненно больше (сравни I и II на рис. 5) и дальнейшее увеличение внешнего поля приводит к возникновению новых зародышей и к последующему их смещению. Для пленок, осажденных на слюдяной подложке, наряду с меньшим H_e характерна высокая квадратичность петли по сравнению с пленками, осажденными на стеклянной подложке.

На рис. 6—І приведена серия снимков, иллюстрирующая процесс перемагничивания пленок MnBi в случае, когда исходная температура конденсации Bi была высокой, что соответствует большим величинам внутренних напряжений. Видно, что из-за образовавшихся в пленке больших микротрещин каждая возникшая при этом микрообласть перемагничивается самостоятельно, что, по-видимому, является следствием больших внутренних напряжений и обуславливает повышение коэрцитивности (см. рис. 4).

И, наконец, большую роль в однородности магнитных характеристик пленок играет состояние поверхности подложки, на которую осаждается MnBi. На рис. 6—II приведен процесс перемагничивания пленок MnBi, осажденных на неоднородной слюдяной подложке, где хорошо видны линии дислокаций и поверхности скольжения. Видно также, что на неоднородных участках пленки коэрцитивность больше, что, естественно, приводит к большому локальному разбросу магнитных характеристик всей пленки в целом.

Авторы выражают благодарность Я. М. Погосяну за предложенную работу и интерес к ней.

Ереванский государственный университет

Поступила 25.ХП.1975

ЛИТЕРАТУРА

1. H. Hoffmann, K. Röll. Z. Angew. Phys., 26, 137 (1969).

2. М. А. Солиман. Изв. АН АрмССР, 11, 102 (1976).

3. Я. М. Погосян, М. А. Солиман. Изв. АН АрмССР, 11, 62 (1976).

ՆԵՐՔԻՆ ԼԱՐՈՒՄՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ MnBi ԹԱՂԱՆԹՆԵՐԻ ՄԱԳՆԻՍԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

Մ. Ա. ՍՈԼԻՄԱՆ, Վ. Ա. ՋԻԴԱՐՅԱՆ

Հետաղոտված է ներթին լարումների առաջացման կինետիկան MnBi թաղանթներում կախված ապակու և փայլարի տակդիրների վրա նրանց ստացման պայմաններից։ Յույց է տրված, որ Bi-ի կոնդննսացիայի ժամանակ թաղանթում առաջանում են սեղման լարումներ, Mn-ի նստացնելուց և դիֆուզիոն ջերմամշակման ենթարկելուց հետո լարումները փոխում են իրենց նշանը։ MnBi թաղանթների բերված մագնիսական բնութագրերը ցույց են տալիս կոէրցիտիվության և ներթին լարումների փոփոխության նմանություն՝ կախված թաղանթների ստացման սկզբնական ջերմաստիճանից, որն իր հերթին վկայում է թաղանթների կոէրցիտիվ ուժի առաջացման մեջ ներթին լարումների էական դերի մասին,

373-3
THE EFFECT OF INTERNAL STRESSES ON MAGNETIC PROPERTIES OF MnBi FILMS

M. A. SOLIMAN, V. A. DZHIDARYAN

The kinetics of the rise of internal stresses in MnBt films was studied depending on the conditions of their preparation on glass and mica substrates. It was shown that at the evaporation of Bt there arised compressive stresses, which changed their sign after the deposition of Mn and the following annealing. The magnetic characteristics of MnBt films are indicative of the analogy between the MnBt deposition temperature dependences of the coercive force and internal stresses which, in its turn, testifies the essential role played by internal stresses in the formation of the coercive force of MnBt films.

ДЕФЕКТЫ НА ПОВЕРХНОСТИ МОНОКРИСТАЛЛА И ТОПОГРАФИЧЕСКИЕ КАРТИНЫ ДИСЛОКАЦИЙ

С. А. ШАБОЯН, М. А. НАВАСАРДЯН

Рассмотрено влияние поверхностных дефектов кремния на топографическую картину дислокаций. Установлено, что шлифованные поверхности, особенио выходная поверхность, сильно искажают информацию, идущую из глубины образца. Работа проделана с образцами кремния (дислокационного, с плотностью дислокаций 10^3 см⁻², и бездислокационного) толщиной 1,28 мм с использованием MoK_{α} -излучения. Отражение было получено от плоскости (220). В случае бездислокационного в поверхностном слое луча после прохождения его через всю толщину кристалла, а именно, отраженный вблизи поверхности входа луч распределялся по всей ширине рефлекса.

После обнаружения и внедрения Лангом [1] рентгенотопографического метода выявления дислокационной картины (дифракция по Лауэ) при $\mu l \leq 1$, полученной от внутренней области высокосовершенных монокристаллов, появилось очень много работ по изучению дефектной структуры кристаллов, выполненных этим методом.

Наряду с работами, посвященными исследованию совершенства структуры реальных кристаллов, появились и работы методического характера, посвященные новым возможностям топографического метода. Среди работ, имсющих методический характер, для нас представляет интерес работа Ланга [2], в которой был предложен метод выявления дефектной структуры внутренней полосы образца (полосы, находящейся между двумя геометрическими поверхностями), где поверхностные дефекты не должны были накладывать свой отлечаток на общую дислокационную картину, т. е. речь идет о методе ограниченной проекционной топографии.

В этом методе пучки, идущие от поверхностного слоя образца, задерживаются, и на пластинку попадает луч, идущий только из выбранной глубины образца. Схема эксперимента Ланга показана на рис. 1. В работе [2]

была получена картина внутренней полосы образца алмаза и сделан вывод о возможности применения этого метода и для изучения других кристаллов.

При попытке применить метод «ограниченной проекционной топографии» для исследования кристаллов кремния выяснилось, что на этом пути имеются серьезные принципиальные трудности. По этой причине была поставлена задача детального изучения влияния поверхностных дефектов на общую гопографическую картину рефлекса, полученную от монокристаллов.

Методика

Для изучения степени пригодности такой схемы для исследования кристаллов образец Si обрабатывался следующим образом. Шайбообразные пластинки кремния (поверхности пластинок предварительно были совмещены с атомной плоскостью (111)) шлифовались мелким шлифовальным порошком. Для удаления поврежденного поверхностного слоя после шлифовки пластинки травились. Эатем получалась микрорентгенографическая картина дислокаций. После проверки наличия дислокационной картины поверхности образца заново шлифовались по определенной форме. Кристалл со шлифованными поверхностями полученной формы представлен на рис. 2, где шлифованные области заштрихованы.

Рис. 2. Кристалл кремния со шлифованными поверхностями; шлифованные части заштрихованы.

Рефлекс был получен от семейства плоскостей (220) с применением излучения MoK_{a_1} (µt=2). След этой плоскости на поверхности образца был перпендикулярен к границе раздела шлифованной области. Картины (секционная и полная топограммы) были получены с помощью камеры КРС с применением острофокусной рентгеновской трубки типа БСВ-7, приспособленной к установке УРС-70. Применялись пластинки для ядерных исследований типа µk. Ширина пучка, направленного к образцу, имела величину 0,1 мм.

На нижнем участке секционной топограммы (рефлекса), рис. Зд. хорошо видны дислокационные линии, а на участке б, где отшлифована выходная поверхность, как и в случае двусторонней шлифовки, участок в, дислокационная картина искажается (почти полностью). Таким образом, пятна от повреждений появляются на краях и на середине рефлекса (см.

рис. За), т. е. пятна разбросаны по всей ширине рефлекса. Это означает, что если даже образец был отшлифован хотя бы только со стороны выхода, то дислокационная картина почти полностью искажается. В случае, когда образец отшлифован только со стороны входа пучка в кристалл, дислокационная картина искажается частично и это происходит вблизи следа отшлифованной поверхности (см. рис. Зг). На рис. Зе представлена топограмма со сканированием кристалла, где штора задерживает следы как входной, так и выходной поверхностей образца на рефлексе. Аналогичные картины получаются при сканировании, когда на рефлексе присутствуют следы входной или выходной поверхностей и эти следы задержаны шторой.

Обсуждение результатов и выводы

Локальные механические напряжения, возникающие в поверхностнояслое образца из-за шлифовки, могут иметь любую полярность, т. е. в поверхностном слое могут присутствовать и области с градиентом напряжений, направленных, в частности, как в сторону дифракционного вектора, так и в сторону, противоположную ему. Конечно, найдутся и области, которые не будут влиять на интенсивность, т. е. векторы градиента напряжений будут перпендикулярны к дифракционному вектору.

Рис. 3. Рефлекс и его части, полученные от частично отшлифованного и дислокационного образцов кремния: а) полный рефлекс с малым увеличением (15×) и отдельные части рефлекса с большим увеличением (50×); б) отшлифована поверхность входа пучка; в) при двусторонней шлифовке; а) отшлифована выходная поверхность; л) поверхности не шлифованы; е) в случае бездислокационного кремния (отшлифована входная поверхность); /) картина, полученная со сканированием, когда задержан след входной поверхности в случае б.

При больших градиентах напряжений (в нашем случае, по-видимому, так и есть) обе области, где градиент напряжений параллелен или антипараллелен дифракционному вектору, будут отражать сильнее, т. е. поверхностные участки, в основном, будут иметь темные изображения. Появление краев рефлекса, соответствующих поверхностным слоям образца, так и можно объяснить.

Поврежденный поверхностный слой образца имеет такую же толщину, что и размеры зерен шлифовального порошка (50—100 мкм). В этом мы убедились, проведя травление поверхностного слоя. После удаления поверхностного слоя толщиной 50—100 мкм дислокационная картина полностью восстанавливается и края рефлекса исчезают. Несмотря на то, что глубина залегания повреждений имеет величину порядка 50—100 мкм, тем не менсе изображение поверхностей имеет ширину 100—200 мкм. Это связано с тем, что напряженное состояние простирается вглубь кристалла значительно больше, чем сама поврежденная область. Появление пятен на середине рефлекса, по-видимому, можно объяснить следующим образом (здесь необходимо различать два случая).

1. Образец подвергался шлифовке со стороны выхода пучка из кристалла. В этом случае излучение, которое покидает кристалл в направлении дифрагированного пучка, будет нести информацию о состоянии поверхности выхода из кристалла, которая покрыта областями с различным образом ориентированными градиентами напряжений. Те области (речь идет о середине рефлекса вокруг точки А на рис. 1), где градиент напряжений направлен вдоль дифракционного вектора или в противоположную сторону, будут сильно отражать энергию [3] (энергия берется из общего потока, т. е. из потока, распространяющегося по треугольнику Бормана), а остальные места будут отражать слабо, и в результате будем иметь изображение этих поверхностных локальных областей в виде черных пятен.

2. Образец подвергался шлифовке со стороны входа пучка в кристалл. В этом случае пучок несет информацию о месте встречи узкого пучка (0,1 мм) со шлифованной поверхностью кристалла. Эта информация по мес ре проникновения вглубь кристалла искажается, если в объеме кристалла имеются дефекты, в частности, дислокации (см. рис. 32).

Наряду с искажением первоначальной информации искажается также изображение дислокационной картины под входной поверхностью, так как разные дефектные участки различным образом возмущают информацию, идущую от входной поверхности. При отсутствии дефектов (дислокаций) первоначально сильно отраженный вблизи входной поверхности (дифрагированный) пучок свою энергию постепенно посылает также и в сторону первичного пучка, а после встречи этих пучков с поверхностью выхода (выходная поверхность не отшлифована) каждый из этих пучков расщепляется на два пучка, которые распространяются по направлению первичных и дифрагированных волн (см. рис. 4). Эту картину хорошо иллюстрирует

Рис. 4. Ход лучей, сильно отраженных вблизи поверхности кристалла и проходящих по объему.

рис. Зе, который представляет собой рефлекс от бездислокационного кристалла кремния, когда отшлифована только поверхность входа. Шлифованные области образца имеют такую же форму, что и у образца, представленного на рис. 2.

На рис. Зе видны размытые черные точки, из которых распространяется ссуженная черная полоса, которая по мере сужения теряет также интенсивность. Такое распределение интенсивности (сужение, уменьшение) объясняется следующим образом. Сильно отраженные в поверхностном слое в сторону дифрагированного пучка лучи на любой глубине образца отражаются в сторону первичного пучка в одинаковой мере. но так как отраженные вблизи поверхности входа лучи (лучи 8, 7, 6 и т. д. на рис. 4) проходят больший путь в кристалле, то эти хвосты на рефлексе получаются слабыми и узкими.

Таким образом, из вышеизложенного эксперимента вытекает, что исследовать кристалл в выбранном интервале глубин образца очень затруднительно, если поверхности или поверхность выхода образца подвергнуты шлифовке, а в случае, когда шлифовке подвергалась только входная поверхность образца, дислокационную картину можно исследовать только под выходной поверхностью, так как там дислокационная картина искажается частично.

СКТБ полупроводниковой техники АрмССР

Поступила 15.VIII.1975

ЛИТЕРАТУРА

A. R. Lang. Brit. J. Appl. Phys., 12, 249 (1959).
 A. R. Lang. Acta Cryst., 14, 904 (1963).

3. М. А. Навасардян, Р. К. Караханян, П. А. Безирганян. Кристаллография, 15, 235 (1970).

ՄԻԱԲՅՈՒՐԵՂԻ ՄԱԿԵՐԵՎՈՒՅԹԱՅԻՆ ԱՐԱՏՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԴԻՍԼՈԿԱՑԻԱՆԵՐԻ ՏՈՊՈԳՐԱՖԻԿ ՊԱՏԿԵՐՆԵՐԻ ՎՐԱ

Ս. Հ. ՇԱԲՈՅԱՆ, Մ. Ա. ՆԱՎԱՍԱԲԴՅԱՆ

⁸ույց է տրված, որ միարյուրեղի մակերեսին եղած արատները, որոնք առաջանում են այուրեղի մեխանիկական Հղկման ժամանակ, խիստ աղավաղում են բյուրեղի ծավալից դիֆրակցված ռենտգենլան ճառադայթների միջոցով բերված ինֆորմացիան։ Դիսլոկացիաների պատկերները անհայտանում են։ Մեծ աղդեցություն է դործում հատկապես բյուրեղի հղկված ելջի մակերեսը։ Գիսլոկացիա չպարունակող նմուշի դեպքում պարզված է մուտքի մակերևույնի մոտ շերտում անդրադարձած (վաուէ-դեպը) ռենտդենյան ճառադայթների տարածման մեխանիդմը թյուրեղի ներսում։ Օգտագործված է MoKa, ճառագայթումը և սիլիցիումի միաթյուրեղի (220) whypupupupanul (12t ~ 1):

THE INFLUENCE OF SURFACE DEFECTS OF SINGLE CRYSTALS ON TOPOGRAPHICAL IMAGES OF DISLOCATIONS

S. H. SHABOYAN, M. A. NAVASARDYAN

The polished surfaces of 1,2 mm thick silicon samples (dislocation-free samples and the ones with $10^2 \ cm^{-2}$ density of dislocations) were shown to greatly distort the information from sample depth. The MoK_{π} radiation was reflected from the (220) atomic planes. For dislocation-free single crystals the typical distribution of the beam reflected in the defective surface layer is obtained after its passage through the crystal, viz, the beam reflected at the input surface distributed over all the reflection width.

ВНУТРЕННЕЕ ТРЕНИЕ В МОНОКРИСТАЛЛАХ ВИСМУТА А. А. ДУРГАРЯН, В. В. ЕСАЯН

Исследовано внутреннее трение в кристаллах висмута в зависимости от амплитуды на частотах 29,9 и 42,6 кгд при температурах 90—373°К. Получены два пика: низкотемпературный пик (при 180°К), который имеет гистерезисный характер, и высокотемпературный релаксационный пик с энергией активации 0,24 эв, обязанный взаимодействию дислокаций с точечными дефектами. Фон внутреннего трения состоит из двух областей: низкотемпературной области, с энергией активации 0,18 эв, и высокотемпературной термоактивационной области, с энергией активации, зависящей от амплитуды колебаний.

Механизм внутреннего трения, связанный с движением дислокаций и их взаимодействием с точечными дефектами и примесями, в кристаллах с низкой симметрией (напр., в кристаллах висмута) изучен еще недостаточно. Исследования, в основном, проведены при комнатной температуре и при T = 1,4°K на низких частотах [1-3], а также на средних частотах с висмутом технической чистоты [4].

Целью насгоящей работы было исследование зависимости внутреннего трения (BT) и модуля упругости (f^2) монокристаллов висмута в зависимости от амплитуды, деформации, температуры и частоты в области средних частот.

Монокристаллы выращивались методом Таммана после многократной зонной очистки из висмута технической чистоты. Измерения проводилисьв геллиевой среде под давлением 10⁻³ ат. ВТ измерялось методом составного осциллятора [4] на частотах 29,9, 42,9 и 42,6 ки на монокристаллах, плоскость (111) которых составляет с осью образца приблизительно 18°. Скорость охлаждения образца составляла 0,3 град/мин. При такой скорости изменения температуры значения BT с повышением и понижением температуры в пределах ошибок совпадали. В исследуемом интервале температур значение BT изменялось в пределах от 10^{-2} до 10^{-5} , поэтому применялись два метода измерения. Чтобы сшибка не превышала 5-6% для значений BT 10⁻² — 10⁻³, измерения проводились методом резонанса и антирезонанса, а для более низких значений использовался метод затуханий свободных колебаний. Переход от одного метода к другому проводился при значениях $BT \ 8 \cdot 10^{-4} \ -1.2 \cdot 10^{-3}$, где оба метода дают совпадающие результаты. Образцы склеивались с пьезокварцем под давлением 30—40 г/мм². Полимеризация клея проводилась при температуре 85°С. Величину критической амплитуды, разделяющей амплитудно-зависимую область BT, определяли путем измерения амплитудной зависимости BT при комнатной температуре. Она оказалась разной ек = 0,95. 10-5, где оба метода дают совпадающие результаты.

Влияние температуры на амплитудно-зависимое внутреннее трение в слегка наклепанном образце монокристалла висмута на настоте 29,9 кгц при амплитудах ε_k приведено на рис. 1 и 2. Наблюдаются два пика *BT*. Высожотемпературный узкий пик, возникший на термически активированном фоне, смещается в сторону высоких температур (вплоть до 80°С) при каждом последовательном измерении при амплитуде г_к (рис. 1). После меисячного отдыха при комнатной температуре пик не сместился, а его вели-

ІРнс. 1. Температурная зависимость ВТ и модуля Юнга (j²) кристаллов Ві на частоте 29,9 ки: △ — 1-е измерение, ▲ —2-ое измерение, □ —3-е измерение, ◆ — 4-ое измерение, ◇ — 5-ое измерение, ● — после месячного отдыха; ○ — при ε = 28 · 10⁻⁵.

Рис. 2. Амплитудная и температурная зависимости *BT* кристаллов *Bi* на частоте 29,9 ки: О — при амплитуде $\varepsilon = 2,8 \cdot 10^{-5}$, △ — $\varepsilon = 9,5 \cdot 10^{-5}$, □ — $\varepsilon = 19 \cdot 10^{-5}$, □ — $\varepsilon = 28 \cdot 10^{-5}$, ▲ — $\varepsilon = 38 \cdot 10^{-5}$, ● — повторное измерение при $\varepsilon = 2,8 \cdot 10^{-5}$.

чина возросла вдвое. Измерения в амплитудно-зависимой области после месячного отдыха при амплитудах, больших ε_{R} (2,8 · 10⁻⁵, 9,5 · 10⁻⁵, 19 · 10⁻⁵ 28 · 10⁻⁵, 38 · 10⁻⁵), не привели к смещению и изменению величины пижа (рис. 1, $\varepsilon = 28 \cdot 10^{-5}$).

Для выяснения характера пиков были проведены измерения температурной зависимости *BT* при амплитуде 10^{-5} на частоте 42,6 кгg (рис. 3 и 4). При каждом последовательном измерении на этой частоте высокотемпературный пик также смещался. Дальнейший отжиг (пятичасовой и де-

Рис. 3. Температурная зависимость *BT* кристаллов *Bi* на частоте 42,6 кгу: О — 1-ое измерение, ● — 2-ое измерение, ▲ — 5-е измерение, ■ — после 5-часового отжига при 100°С, △ — после 10-часового отжига при 100°С, □ — висмут с 6°/₀ примесью *Pb*.

сятичасовой при 100°С в вакууме) не привел к заметному смещению пика. Окончательной температурой высокотемпературного пика на частоте 42,6 кгц является 97°С. Исходя из частотного сдвига пика, была вычислена энергия активации, которая оказалась равной 0,24 эв. Частотный фактор f_0 равен 9,5 · 10⁷ сек⁻¹. Высокотемпературный пик не устранялся отжигом, но он подавлялся при введении примесей, на что указывает измерение для образца висмута с 6%-ой примесью *Pb* (рис. 3).

Плотность дислокаций, рассчитанная по ямкам травления на плоскости (111), в образцах оказалась порядка 10⁷ см⁻², а плотность дефектов упаковки—порядка 10⁴ см⁻². Нужно отметить, что изменение амплитуды колебаний не приводило к изменению порядка плотности дислокаций и плотности дефектов упаковки, что контролировалось с помощью металлографического микроскопа.

Исходя из экспоненциального роста термически активированного фона, на рис. 5 дана зависимость $\ln \Delta$ от $\frac{1}{T}$ при различных амплитудах колебаний для образца с частотой 29,9 кгу. Как видно, эти зависимости состоят

Рис. 5. Логарифмическая зависимость BT от $\frac{1}{T}$ для различных амплитуд: \Box — измерение при амплитуде $\varepsilon = 0.95 \cdot 10^{-5}$ на частоте 29,6 игд, $\Delta - \varepsilon = 9.5 \cdot 10^{-5}$, $\bigcirc -\varepsilon = 19.5 \cdot 10^{-5}$, $\bigcirc -\varepsilon = 23 \cdot 10^{-5}$, \triangle — измерение при амплитуде $\varepsilon = 10^{-5}$ на частоте 42,6 игд.

нз двух линейных участков. Энергия активации низкотемпературного участка, равная 0,18 эв, не зависит от амплитуды и частоты, а энергия активации фона, соответствующего более высоким температурам, зависит от амплитуды. Для амплитуд $\varepsilon = 0.95 \cdot 10^{-5}$, $9.5 \cdot 10^{-5}$, $19 \cdot 10^{-5}$ и $28 \cdot 10^{-5}$ энергии активации соответственно равны 0,5, 0,46, 0,42 и 0,38 эв. На рисунке приведена также зависимость $\ln \Delta$ от $\frac{1}{T}$ для образца с частотой 42,6 кгц при амплитуде $\varepsilon = 10^{-5}$. Энергия активации низкотемпературного участка также равна 0,18 эв, а эторому участку соответствует более высокая энергия активации — 0,82 эв.

Механизм поглощения низкотемпературного участка фона не зависит от амплитуды и обязан перераспределению точек закрепления вдоль дислокаций под действием внешнего напряжения. Повышение фона поглощения

под действием температуры и амплитуды обязано увеличению числа точек перераспределения. С учетом критической амплитуды ($\varepsilon_{\kappa} = 0.95 \cdot 10^{-5}$), разделяющей амплитудно-независимую и амплитудно-зависимую области BT, можно оценить критическое напряжение перераспределения точек закрепления

 $\sigma_c \equiv \varepsilon_{\kappa} \mu = 10^{-5} \mu (\mu - MOZYAB CZBИГА).$

Высокотемпературный участок фона, где энергия активации уменьшается с увеличением амплитуды колебаний, соответствует термоактивационному отрыву дислокаций от точечных дефектов [11]. В этом случае поле дефектов преодолевается дислокацией под действием внешнего воздействия (ультразвука) и термической флюктуацией. Как и следовало ожидать (рис. 5), при таком механизме поглощения переход нетермоактивационного процесса при высоких амплитудах в термоактивационный происходит начиная с более низких температур.

Из зависимости энергии активации от амплитуды внешнего напряжения был вычислен активационный объем по формуле [11]

$$v = -\frac{dH}{dz},$$

где *H* — энергия активации, т — амплитуда напряжения. Величина активационного объема оказалась равной 10⁻²¹ см³. Из экстраполяции зависимости энергии активации от амплитуды напряжения к нулевой амплитуде была получена величина энергии связи (*H*_{cb}) дислокации с точечными дефектами, которая оказалась равной 0,65 эв.

Зная энергию связи дислокации с точечными дефектами, можно определить критическое напряжение механического отрыва точек закрепления при комнатной температуре, используя зависимость [10]

 $\sigma_{a} = \left(\frac{2 H_{ca}}{kT}\right)^{1/2} \sigma_{c} \approx 5 \sigma_{c}.$

Так как в области высокотемпературного пика амплитуда приложенного внешнего напряжения имеет порядок критического напряжения механического отрыва точечных дефектов, то с учетом того, что высота пика не зависит от амплитуды, можно предположить, что механизм поглощения связан не с краевыми дислокациями, а с дефектами упаковки.

Для оценки коэффициента демпфирования (В) применим релаксационную теорию дислокационного поглощения по модели Келлера—Виртмана [13]. Согласно этой модели декремент затухания записывается в следующем виде:

$$\Delta = \frac{\pi E a^2 N B \omega}{16 \left(G_0 + G N - M \omega^2 \right)^2 + E^2 \omega^2},$$

где G₀ — коэффициент восстанавливающей силы закрепленной дислокации, G — коэффициент восстанавливающей силы, обусловленной взаимодействием с другой дислокацией, M — эффективная масса дислокаций.

Если принять $M\omega^2 \ll GN + G_o$, что имеет место при исследуемых частотах, это равенство можно записать в следующем виде:

$$\Delta = \frac{\pi E a^2 N}{16 (G_0 + GN)} \frac{B_{\rm m}/(G_0 + GN)}{1 + B^2 \omega^2/(G_0 + GN)^2}$$

Из сравнения с выражением

$$\Delta = \Delta_0 \, \omega \tau / (1 + \omega^2 \tau^2)$$

получаем

$$\tau = \frac{B}{G_0 + GN}, \quad \Delta_{\max} = \frac{1}{2} \Delta = \frac{\pi E a^2 N}{32 (G_0 + GN)}.$$

Из этих уравнений с учетом плотности дефектов упаковки ($N = 10^4 \text{ см}^{-2}$), экспериментального значения максимума декремента затухания для данной частоты и соответствующих значений модуля упругости E и параметра решетки a в плоскости (111) для B получим значение порядка 10^{-3} дин сек/см⁻².

Такое же значение коэффициента демпфирования получается из теоретических расчетов Лейбфрида [12]. По этой теории

$$B=\frac{3\,kZ}{10\,v_{l}\,a^{2}}\,T,$$

где а — параметр решетки, U₁ — скорость упругих поперечных волн, Z число атомов в элементарной ячейке, k — постоянная Больцмана, T температура пика.

Совпадение значения коэффициента демпфирования, рассчитанного из эксперимента, с теоретическим указывает на то, что высокотемпературный пик обусловлен релаксацией дефектов упаковки. Смещение же пика объясняется увеличением длины частичных дислокаций вокруг дефектов упаковки при отжиге за счет диффузии неравновесных вакансий в области дефектов упаковки.

Низкотемпературный пик для образца с частотой 29,9 кгу возникает при амплитудах, больших ε_{κ} (рис. 2). После амплитудно-зависимых измерений измерение при амплитуда ε_{κ} приводит к исчезновению пика, что указывает на обратимый характер низкотемпературного пика. На образце с частотой 42,6 кгу была получена серия аналогичных кривых. Часть этих кривых представлена на рис. 4. После предварительной деформации низкотемпературный пик наблюдается при амплитуде, равной ε_{κ} (рис. 4). Этот пик подавляется отжигом при 100°С (рис. 4) и вновь возникает при амплитудах, больших ε_{κ} . Величина низкотемпературного пика в исследуемой области амплитуд линейно растет в зависимости от амплитуды, а начиная со значений $\varepsilon = 8,5 \cdot 10^{-5}$ росг не наблюдается (рис. 2*a*).

Поведение амплитудно-зависимого поглощения в области пика для образцов с плотностью дислокаций $10^8 - 10^7$ см⁻² можно объяснить в рамках модели [8], в которой предполагается, что движение дислокации. оторвавшейся от точек закрепления, ограничивается не только ее линейным натяжением (К-Г-Л), но и полем напряжений, обусловленным соседними примесными атомами. Зависимость *BT* от амплитуды, предсказываемая этой моделью, имеет независимую от амплитуды область (плато). Лишь при очень высоких амплитудах наблюдается экспоненциальная зависимость

от амплитуды, совпадающая с теорией К—Г—Л. Полученный пик носит, по-видимому, дислокационно-гистерезисный характер, так как потери в этом случае зависят от амплитуды колебаний.

Ереванский государственный университет

Поступила 20.IV.1975

ЛИТЕРАТУРА

- 1. K. K. Copinathan, A. Padmimi. J. Phys. Japan, 39, 1169 (1972).
- 2. А. П. Королюк. ЖЭТФ, 49, 1009 (1965).
- В. С. Постников, И. М. Шаршаков, Э. М. Масленников. Релаксационные явления в металлах и сплавах, Труды III Всесоюзной научной конференции, 1963, стр. 165.
- 4. Е. Г. Швидковский, А. А. Дургарян. НДВШ, серня физ.-мат., 6, 211 (1958).
- 5. Е. Г. Швидковский, А. А. Дургарян. НДВШ, серия физ.-мат., 5, 217 (1958).
- 6. T. Nikone, N. Komitomi, M. Abe. J. Phys. Soc. Japan, 10, 960 (1955).
- 7. A. C. Roberts, Am. Cottrell. Phil. Mag., 1, 111 (1956).
- 8. J. C. Swariz, J. Weertman. J. Appl. Phys., 32, 1860 (1961).
- 9. У. Мезон. Физическая акустика, Изд. Мир, М., 1968, том 3, часть А, стр. 180.
- 10. К. Jamafuji, Ch. L. Bauer. J. Appl. Phys., 36, 3228 (1965). Сб. Актуальные вопросы теории дислокаций, 1968, стр. 115.
- В. А. Инденбом, В. М. Чернов. Сб. Механизмы релаксационных явлений в твердых телах, Изд. Наука, 1972, стр. 87.
- 12. G. Leibfried. Zs. Phys., 127, 344 (1950).
- 13. J. Weertman. J. S. Kochler. J. Appl. Phys., 24, 624 (1953).

ՆԵՐՔԻՆ ՇՓՈՒՄԸ Bi ՄՈՆՈԲՑՈՒՐԵՂՆԵՐՈՒՄ

Ա. Հ. ԳՈՒՐԳԱՐՅԱՆ, Վ. Վ. ԵՍԱՅԱՆ

INTERNAL FRICTION IN Bi MONOCRYSTALS

A. A. DOURGARYAN, V. V. ESAYAN

The amplitude dependence of the internal friction in Bi crystals is investigated in 90° —373 °K temperature range at frequencies 29,9 and 42,6 kc. Two peaks of internal friction are observed, the hysteretical type low temperature (180°K) peak and the high temperature one which was due to the interaction of dislocations with point defects. The amplitude dependence of the activation energy of the thermoactivation process was calculated.

ОПТИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ ДЕФОРМАЦИОННОГО РЕЛЬЕФА ИОННЫХ КРИСТАЛЛОВ

Э. Ф. ЗАЗЯН, Ю. В. КОВАЛЕВ, А. А. ХАНОНКИН

Предложен простой оптический метод исследования поверхности естественного скола циклически деформированного ионного монокристалла. Метод основан на трансформирования оптического избражения цилиндрического зеркала. Получены экспериментальные результаты, подтверждающие возникновение складчатого рельефа на поверхности циклически деформированных кристаллов каменной соли и бромистого калия.

В работах [1—3] содержатся экспериментальные данные и теория возникновения складчатого рельефа на поверхности циклически деформированных материалов. В настоящей работе для исследования деформационного рельефа были выбраны ионные кристаллы. Выбор объекта вызван отсутствием в литературе данных о возможности возникновения складчатого рельефа на поверхности хрупких материалов. Кроме того, естественный скол ионного кристалла является удобным для получения рефлексов видимого света, излучаемого точечным источником. При этом оказалось целесообразным использовать оптику трансформированных изображений при самоувеличении изогнутого кристалла [4].

Методика эксперимента заключалась в том, чтобы получить на описанном в [5] изгибающем устройстве рефлексы от изогнутых кристаллов в фокусе зеркала, перед фокусом и за фокусом. На рис. 1 представлен набор 28 рефлексограмм, 14 из которых были получены между поверхностью кристалла и его фокусом, а остальные — за фокусом кристалла. В качестве кристаллической пластинки, дававшей рефлекс, использовалась пластинка монохристалла каменной соли, изогнутая до радиуса 200 мм. Фокусное расстояние при косом освещении кристалла (вогнутого зеркала) получалось равным 70 мм, а рефлексы представляли собой сечения отраженного пучка, перпендикулярные к его оси и пересекающие пучок через каждые 5 мм.

Рассмотрим детально полученную картину. У поверхности кристалла рефлекс по своей площади получился в натуральную величину отражающей поверхности кристалла. На нем просматриваются дефекты скола. При приближении к фокусу кристалла картина становится менее четкой, а фокус приобретает форму гантели. Можно полагать, что кристалл изогнулся не по цилиндрической, а скорее по седлообразной поверхности, о чем свидетельствует «гантель» в фокусе кристалла. За фокусом размытие изображения усиливается. Однако нельзя сказать, что картина за фокусом становится просто бесформенной. Наоборот, на всех рефлексограммах обнаруживается четкий контур, который на самом большом расстоянии приближается к прямоугольнику. Другими словами, на большом расстоянии мы получаем трансформированное и увеличенное изображение отражающей поверхности кристалла. Поскольку описанный эксперимент был повторен, по крайней мерс, 10 раз и получены аналогичные результаты, можно считать экспериментально установленным эффект трансформирования при использовании точечного источника видимого света, в отличие от аналогичных работ [4, 6] в рентгеновском излучении.

Сравним теперь рефлексограммы перед фокусом и за фокусом кристалла. Рефлексограмма у самой поверхности кристалла, как мы уже указывали, дает четкую картину поверхности кристалла в отраженном свете. Однако некоторые детали на такой «барретограмме» оказываются непонят-

劉 副

Рис. 1.

Рис. 2.

Рис. 1. Оптические рефлексограммы, полученные от однократно-изогнутого монокристалла NaCl методом трансформирования изображения: 14-ая слева соответствует фокусу цилиндрического зеркала (уменьшено в 6 раз). Рис. 2. Картина оптического самоувеличения, полученная от изогнутого монокристалла NaCl (после 0,5 цикла и после 5 циклов нагружения) на различных расстояниях перед фокусом и за фокусом.

ными. Действительно, когда речь идет о барретограмме, получаемой в рентгеновском излучении, то белые пятна характеризуют в ней дезориентацию в соседних областях кристаллов и, в конечном счете, являются изображением кристалла, не удовлетворяющим условию Вульфа—Брэгга. Эдесь же в области видимого света нет условий, ограничивающих закон отражения света. Эдесь, казалось бы, должна работать на отражение вся поверхность кристалла. Однако белые пятна на рефлексах все же имеются. Их природа становится понятной, если проанализировать рефлексограммы на большом расстоянии. А последние являются размытыми не столько в результате .373—4 дефокусировки, сколько из-за неоднородности изгиба отражающей поверхности монокристалла. Отдельные участки поверхности кристалла имеют микрокривизну, сильно отличающуюся от кривизны кристалла в целом. Какова же конкретно эта неоднородность, показывают рефлексы в фокусе (гантель) и рефлексы, полученные на большом расстоянии за фокусом. В частности, самые далекие рефлексы имеют в центре большую белую область, которая получилась в результате седлообразного изгиба монокристалла. Образование «седла» может быть связано с концентрацией напряжений у отверстий [5] в передней стальной пластине (отверстием в пластине является окошко). Таким образом, рефлексы, сфотографированные у самой поверхности кристалла и далеко за фокусом, с точки эрения получаемой от них информации не исключают, а дополняют друг друга.

Существенно подчеркнуть, что признаком деформационного рельефа на рефлексах, полученных вблизи кристалла, являются вертикальные полосы, адекватные числу гофров на поверхности кристалла [1—3]. Обращает на себя внимание увеличение числа вертикальных полос по мере увеличения числа циклов. На рис. 3 представлена кривая, изображающая зависимость числа поперечных полос от числа циклов для кристаллов бромистого калия.

Рис. 3. Зависимость числа поперечных полос (морщин) от числа циклов нагружения деформации изгиба для кристаллов бромистого калия.

Если учесть, что при косом освещении кристалла легко обнаруживаются гофры на поверхности кристалла, то светлые вертикальные полосы можно трактовать как участки трансформированного изображения, соответствующие выпуклостям гофра. Число «морщин» на поверхности ионного кристалла можно поставить в соответствие с числом волн, образованных в результате потери устойчивости поверхностного слоя ионного кристалла [2].

На рис. 2 показан характер рефлексов, полученных на различных расстояниях от одного и того же образца каменной соли после полуцикла и после пяти циклов. С целью получения достоверных сведений мы сравнивали рефлексы, полученные на различных расстояниях от кристалла (строго говоря, можно было бы ограничиться гораздо меньшим числом расстояний от кристалла). Тем не менее, сравнивая рефлексограммы после полуцикла и пяти циклов, можно заключить следующее. 1. Циклическая деформация, несомненно, приводит к резкой дефокусировке фокальной линии. Действительно, судя по рефлексограммам, полученным после полуцикла, девятая рефлексограмма характеризует фокальную линию кристалла, однако девятая рефлексограмма после пяти циклов не является фокусом кристалла. Скорее таковым является 4-ая рефлексограмма, полученная после пяти циклов. Таким образом, циклическая деформация изменяет фокусное расстояние кристалла. Ведь все рефлексограммы были получены при строго фиксированных параметрах перемещения опор изгибающего устройства. Стальные пластины, сжимающие кристалл, в каждом цикле деформации имели радиус изгиба 200 мм, при котором происходила фотосъемка. Между тем явление потери устойчивости, приводящее к изменению фокусного расстояния зеркала, в кристалле проявляется настолько сильно, что жесткости стальных пластин не хватило бы, чтобы его предотвратить.

2. Если обратить внимание на рефлексы, полученные у поверхности кристалла, то видно, что число гофров после пяти циклов увеличилось.

Таким образом, разработанный оптический метод исследования оказался эффективным для изучения деформационного рельефа циклически деформированного ионного кристалла.

Ереванский политехнический институт Одесский государственный университе г

Поступила 30.V.1975

ЛИТЕРАТУРА

- М. Г. Лозинский. Строение и свойства металлов и сплавов при высоких температурах, Металлургиздат, 1963.
- 2. Л. Б. Эрлих. Циклическая прочность металлов, Изд. АН СССР, М., 1962.
- 3. Л. Б. Эрлих. ФММ, 9, 57 (1960).
- А. А. Ханонкин. Тезисы докладов шестой научной конференции по проблеме прочности и пластичности металлов и сплавов, Л., 1969, стр. 163.
- 5. Г. К. Андрижиевский, Л. М. Моисеев, А. А. Ханонкин. Заводская лаборатория, № 9, 1151 (1970).
- 6. А. А. Ханонкин, Л. М. Моиссев. Тезисы докладов шестой научной конференции по проблеме прочности и пластичности металлов и сплавов, Л., 1969, стр. 36.

ԻՈՆԱՅԻՆ ԲՅՈՒՐԵՂՆԵՐԻ ԴԵՖՈՐՄԱՑԻՈՆ ՌԵԼԵՖԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ՕՊՏԻԿԱԿԱՆ ԵՂԱՆԱԿՈՎ

Չ. Ֆ. ՉԱՉՅԱՆ, ՅՈՒ. Վ. ԿՈՎԱԼՅՈՎ. Ա. Ա. ԽԱՆՈՆԿԻՆ

Ստացված են փորձնական տվյալներ, որոնք վկայում են ցիկլիկ դեֆորմացիայի ենկարկված իոնային բյուրեղի վրա ծալքերի առաջացման և նրանց կվի աճման մասին։

THE OPTICAL METHOD OF INVESTIGATION OF DEFORMATION RELIEF OF IONIC CRYSTALS

Z. P. ZAZYAN, Y. V. KOVALEV, A. A. KHANONKIN

The experimental data are obtained which witness the formation and the increase of the number of layers on the surface of an ion crystal subjected to cyclic

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОИСТВА ДИОДОВ, ИЗГОТОВЛЕН-НЫХ НА ОСНОВЕ КОМПЕНСИРОВАННОГО КОБАЛЬТОМ КРЕМНИЯ

И. А. САРКИСЯН

Экспериментально исследованы основные параметры структур p⁺-n-n⁺. типа при воздействии освещения, магнитного поля, температуры, а также переходные характеристики S-диодов.

В настоящее время имеется довольно богатая литература, касающаяся теоретических и экспериментальных исследований полупроводников, компенсированных глубокими примесями, и приборов, изготовленных на их основе. Сравнительно малоизученной примесью в кремнии является кобальт. Исследования фотоэлектрических свойств Si: Со, из которых были изготовлены диоды, выявили три глубоких уровня: донорный $E_v + 0,28$ эв и два акцепторных — $E_c - 0,56$ эв и $E_c - 0,41$ эв [1].

Целью настоящей работы является экспериментальное изучение некоторых электрофизических свойств *p*+-*n*-*n*+-диодных структур на основе *Si*: *Co*. Для компенсации были использованы пластины кремния *n*-типа с удельным сопротивлением 40, 78 и 93 *ом см*. Компенсированные образцы имели удельное сопротивление порядка 10—40 ком *см*. Согласно холловским измерениям подвижность электронов при этом составляла 500— 800 *см²/в сек*.

Было изготовлено более 100 днодов. $p^{+.n.n^+}$ -диодные структуры формировались вплавлением проволоки из Al с одной стороны компенсированной пластины и сплава Au+0,1% Sb — с другой. Длина базы диодов определялась толщиной пластины кремния и временем вплавления контактов. Этими факторами объясняются сравнительно большие расхождения в параметрах диодов.

1. Статические *BAX* диодов измерялись в режиме генератора тока в диапазоне температур 200—360°К. На прямой ветви *BAX* наблюдался участок S-образного OAC, исчезающий при высоких температурах (330—360°К). Напряжение срыва у одной группы диодов, причисляемых к высоковольтным, при комнатной температуре находилось в интервале 10—50 в, у низковольтных — 3—10 в и, наконец, у группы особенно низковольтных диодов — ниже 3 в. Поведение тока подчинялось закономерности $I \sim V_i^n$ в положительной области до срыва, где n=3/2; этому участку предшествовал линейный участок. У высоковольтных диодов при температуре выше 320°К наблюдалось линейное поведение *BAX* до срыва. Ниже 240°К n достигает больших значений. У самых низковольтных диодов в широком интервале температур до срыва наблюдалась линейная закономерность. В области температур выше 250—360°К напряжение срыва чувствительно к изменению температуры. Закон изменения его— $V_{\rm cp.} \sim e^{\Delta E/kT}$, где ΔE для разных диодов принимало значения 0,24; 0,35; 0,4 и 0,56 эв. Ниже 160—170°К

 $V_{\rm cp.}$ практически было постоянным. В поведении $V_{\rm cp.}$ от температуры проявляется та же закономерность, что у сопротивления базы диодов.

В широком диапазоне температур V_{\min}^{*} оставалось практически постоянным (его эначения колебались в пределах 0,6—3 в). У небольшой группы высоковольтных диодов отмечались высокие значения V_{\min} ; с понижением температуры V_{\min} сильно уменьшалось (например, от 9 в при 320°К до 2 в при 200°К). По-видимому, при высоких температурах после основного срыва где-то при больших токах можно было ожидать появления второго срыва. При комнатной температуре отношение $V_{\rm cp.}/V_{\rm min}$ для разных диодов менялось в пределах 2—15.

По поведению тока срыва $J_{\rm cp}$. диоды можно разделить на две большие группы: у одной группы $J_{\rm cp}$. постоянен в широком диапазоне температур, у другой группы он меняется с температурой — с понижением температуры $J_{\rm cp}$. увеличивается. Было замечено, что это явление имеет место у диодов с достаточно широкой базой—порядка 300 мкм. У небольшой группы диодов с шириной базы порядка 100 мкм $J_{\rm cp}$. возрастал с повышением температуры.

После срыва в интервале токов в пределах одного и более порядков напряжение на диоде практически оставалось постоянным, т. е. наблюдалась-«вертикаль».

При освещении лампочкой микроскопа со стороны *p-n*-перехода $V_{\rm cp}$ уменьшалось, $J_{\rm cp.}$ оставался постоянным, $V_{\rm min}$ тоже не менялось. Эти наблюдения велись при комнатной температуре и с нагревом. Аналогичные исследования на диодах на основе Si: Ag [2], Si: S [3] и Si: Zn [4] показали рост прямого тока.

2. Во всей исследуемой области температур на прямой ветви ВАХ диодов до срыва колебания, подобные шумовым колебаниям в диодах Si: Cd [5], не наблюдались. В области ОС присоединением параллельной емкости можно было наблюдать генерацию релаксационных колебаний. Частота этих колебаний составляла несколько кгц, амплитуда — несколько мв. Частота и амплитуда определяются током смещения: с ростом тока смещения частота увеличивается, а амплитуда уменьшается. Форма колебаний обусловлена зарядом и разрядом конденсатора, однако разряд цепи пронсходит намного быстрее из-за малого сопротивления диода, который во время разряда находится на вертикальном участке. Параллельная емкость меняет вид участка ОС: с увеличением емкости появляется второй срыв [7]; ВАХ после срыва перемещается вверх в сторону увеличения тока (рис. 1). Влияние емкостей порядка нескольких мкф ничтожно мало. С увеличением емкости частота колебаний уменьшается, а амплитуда растет (рис. 2). Частота колебаний растет с повышением температуры в интервале 275—335°К; в интервале 213—275°К частота практически постоянна.

При освещении прибора лампочкой микроскопа со стороны *p-n*-перехода можно было наблюдать уменьшение амплитуды колебаний. Так, если в темноте амплитуда колебаний составляла 0,09 *в*, с освещением она становилась равной 0,05 *в*. Частота при этом возрастала от 3,6 кг<u>и</u> в темноте до

24,2 кгц при освещении. Освещение базовой области не влияло ни на форму, ни на параметры колебаний.

Рис. 1. Рис. 2. Рис. 1. Семейство типичных ВАХ диода, снятых при разных шунтирующих емкостях: 1—0; 2—1; 3—5; 4—9; 5—11; 6—20; 7—30 и 8—40 иф. Рис. 2. Зависимость частоты и амплитуды (пунктирные кривые) колебаний на участке ОДС от разных шунтирующих емкостей при разных токах смещения: 1—0,8; 2—0,6 и 3—0,4 ма.

3. С целью обнаружения и исследования движения шнура тока в поперечном магнитном поле была использована методика [6]. Большая часть наших диодов была не чувствительна к действию магнитного поля. У небольшой группы диодов BAX претерпевала некоторые изменения под влиянием поперечного магнитного поля: $J_{cp.}$ во всех случаях оставался постоянным, $J_{oct.}$ с увеличением напряженности от 0 до 8 кэ уменьшался, $V_{cp.}$ с увеличением H либо росло, либо падало, V_{min} было постоянным в интервале от 0 до 2 кэ, далее с увсличением магнитного поля до 8 кэ линейно возрастало ($5 \cdot 10^{-4} \, s/a$). Оказалось, что магниточувствительные диоды имеют отличные от других диодов статические BAX: в отсутствии магнитного поля при нагревании V_{min} увеличивается, при освещении — уменьшается.

4. С помощью двух сдвинутых прямоугольных импульсов положительной полярности с регулируемой задержкой исследовалось быстродействие диодов. Переходные характеристики были сняты по известной методике [8] в режиме генератора напряжения. Импульсы напряжения и тока наблюдались на двухлучевом осциллографе С1-18. В качестве генератора импульсов использовался генератор Г5-7А. Время задержки (время запаздывания включения) диода $\tau_{3.}$ и время переключения диода из непроводящего состояния в проводящее $\tau_{nep.}$ зависели от амплитуды подаваемого импульса н с ростом перенапряжения они монотонно уменьшались. У отдельных диодов $\tau_{3.}$ менялось от 10 мксек до 1,8 мксек, $\tau_{nep.}$ — от 50 до 0,4 мксек. Харак-

Рис. 4. Зависимость ВАХ типичного диода от величины напряженности магнитного поля.

тер восстановления диода исследовался по восстановлению II импульса по мере удаления его от заднего фронта I импульса. Постоянная времени восстановления есть $\vartheta = \frac{\ln (1/V - 1/V_{\infty})}{|\Delta t}$, где Δt — задержка между I и II импульсами, V_{∞} — постоянное напряжение срыва II импульса при большом Δt . Зависимость $\ln \left(\frac{1}{V} - \frac{1}{V_{\infty}}\right)$ от Δt имеет 3—4 наклона (рис. 3). При изменении температуры наклон кривых практически не меняется, значение ϑ возрастает с температурой.

В заключение автор приносит благодарность В. М. Арутюняну и Р. Г. Симоняну за ценные советы и Р. Е. Аршакян за помощь в проведении эксперимента и обработке полученных данных.

Институт радиофизики и электроники АН АрмССР

Поступила 5.111.1975

ЛИТЕРАТУРА

1. В. М. Арутюнян, И. А. Саркисян. ФТП, 9, 1248 (1975).

2. Г. М. Авакьянц. С. Г. Долмазян, Э. А. Хазарджян. ДАН АрмССР, 57, 1 (1973).

3. А. А. Лебедев, А. Т. Мамадалимов, Н. А. Султанов. ФТП, 5, 22 (1971).

4. Г. М. Авакьяну и др. Микроэлектроника, 3, 49 (1974).

5. Г. М. Авакьянц и др. Изв. АН АрмССР, Физика, 5, 41 (1970).

6. Г. М. Авакьянц н др. ДАН АрмССР, 49, 24 (1969).

7. Г. М. Авакьянц и др. Раднотехника и электроника, 10, 2037 (1965).

8. Л. М. Бугасва, А. А. Лебедев. Физика р-п-перехода, Изд. Зинатие. Рига, 1966.

ԿՈԲԱԼՏՈՎ ԿՈՄՊԵՆՍԱՑՎԱԾ ՍԻԼԻՑԻՈՒՄԻՑ ՊԱՏՐԱՍՏՎԱԾ ԴԻՈԴՆԵՐԻ ԷԼԵԿՏՐԱՖԻԶԻԿԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

Ի. Ա. ՍԱՐԳՍՑԱՆ

Φηρδύωμωն **δ**ύտազոտման են ենβարկված կոբալառվ կոմպնեսացված 11-տիպի սիլիցիումից պատրաստված S- դիոդային կառուցված քները։ Այս դիոդների ճամար ճատկանշական են խզման ճոսանքի ջերմաստիճանային անոմալ վարքը, նվազագույն լարման անկախությունը ջերմաստիճանի փոփոխումից, աղմուկային տատանումների բացակայությունը վոլտ-ամպերային բնուքագծի դրական տիրույթում, ռելակսացիոն տատանումների առաջացումը բացասական դիմադրունյան տեղամասում, վերականգնման ժամանակի ճաստատունների կորերի թեքության կայունունյունը ջերմաստիճանից։ Այս դիոդների մեծ մասը անզգայուն է մագնիսական դաշտի նկատմամը.

ELECTROPHYSICAL PROPERTIES OF COBALT-DOPED SILICON DIODES

I. A. SARKISYAN

The p^+ -n-n⁺ type diode structures in cobalt-doped n-type St were studied experimentally. The distinctive features of these diodes are: the anomalous temperature dependence of threshold current $J_{cp.}$; the constancy of minimum voltage V_{min} at the variations of temperature; the absence of noise oscillations in the forward bias; the generation of relaxation oscillations in the negative resistance region and the temperature independence of the recovery constant time lines.

· Lander of Alleria - State and a

ВЛИЯНИЕ ДАВЛЕНИЯ НА ВОЛЬТ-АМПЕРНУЮ ХАРАКТЕРИСТИКУ КОНТАКТА МЕТАЛЛ—ПОЛУПРОВОДНИК

Ю. А. АБРАМЯН, Р. Г. СИМОНЯН, В. А. АРУТЮНОВ

Приведсны результаты экспериментального исследования вольт-фарадных и переходных характеристик для контакта металлический зонд—германий при высоких давлениях. Полученные данные (резкий спад емкости на участке срыва и переходные характеристики) позволяют считать, что механизм ОС на BAX связан с падением концентрации носителей тока на участке срыва.

Отрицательная дифференциальная проводимость (ОДП) на ВАХ контакта металл—германий при высоких давлениях описана во многих работах [1—3]. Однако механизм формирования ОДП остается открытым. В настоящей работе в свете наших исследований делается попытка качественного объяснения указанного явления.

Исследуемые образцы германия *п*-типа с удельным сопротивлением $\rho = 8 \div 20$ ом см нарезались из слитков на пластины толщиной ~ 700 мкм и сошлифовывались микропорошком М-10 с обеих сторон до толщины ~ 600 мкм. Затем электрохимическим методом (либо вплавлением в вакууме) на одну из сторон пластины наносился омический контакт. Другая сторона подвергалась дальнейшей обработке для удаления разрушенного слоя на глубину ~ 50 мкм микропорошком М-5 с последующей полировкой алмазными пастами АМ-1 и АМ-0,1. Обработанные указанным способом кристаллы нарезались на шайбы (3×3 мм²) и припаивались к кристаллодержателю. Металлическим контактом к полированной поверхности служила обработанная электролитически в ортофосфорной кислоте проволока из стали У—8 с диаметром острия ~ 70÷80 мкм.

Обычно при малых давлениях с ростом приложенного напряжения (при обратных смещениях) ток практически остается постоянным, как у обычного диода с насыщением (насыщение имеет место для элементов без утечек при тщательной обработке кристаллов). Дальнейший рост давления приводит к изменению ВАХ с появлением некоторого наклона, а затем участка с ОДП. При последующем росте давления наблюдается некоторый рост отрицательного сопротивления *N*-типа, а затем постепенное уменьшение ОДП вплоть до исчезновения. Вся картина обратима и с уменьшением давления наблюдается обратный ход кривых.

На многочисленных кристаллах, вырезанных по всевозможным кристаллографическим плоскостям, нами было установлено, что ОДП определяется, в основном, чистотой обработки зондов и очень слабо зависит от ориентации поля по отношению к кристаллографическим осям. Независимость возникновения ОДП от ориентации электрического поля относительно кристаллографических осей говорит о том, что механизм возникновения ОС нельзя объяснить в рамках неэквивалентных переходов носителей тока [4, 5]. Что касается влияния давления на сдвиг вырожденных зон, изменение заселенности различных минимумов в многодолинных полупроводниках [6], то и для них ОС зависит от ориентации деформации и поля к кристаллографическим осям.

Минимальные значения плотности токов, при которых возникает ОДП, порядка 4 a/cm², температура перехода при этом практически не отличается от температуры окружающей среды, что исключает тепловой прогрев. Кроме того, ОДП и указанное поведение ВАХ в целом имеет место в широком интервале температур (от —100 до +100°C [7]), поэтому связать ОДП с изменением подвижности в зависимости от механизма рассеяния не представляется возможным.

С целью установления физики формирования ОС нами были сняты переходные характеристики токов при подаче на контакт импульсов прямоугольного напряжения (рис. 1, *a*, *б*, *в* соответствуют все возрастающим

Рис. 1. Переходные характеристики тока при разных амплитудах импульса напряжения (T=300°K).

значениям импульса прямоугольного напряжения с длительностью 5 мксек), а также измерены вольт-фарадные характеристики мостовым методом на малом переменном сигнале с частотой 100 кгц. Перед измерениями кристаллы обрабатывались в полирующем травителе с последующей тщательной промывкой в деионизованной воде. На рис. 2, 3 и 4 приведены типич-

(T=300°К, 0=20 ом см).

ные вольт-фарадные характеристики. В верхнем правом углу рисунков представлены соответствующие им ВАХ.

Отметим, что если для большинства образцов при малых давлениях (нет OC) зависимость тока от напряжения имеет вид $I \sim VU$, то при давлениях, когда имеется OC ($P \simeq 10^4 \text{ kz/cm}^2$), $I \sim U^n$, где $n \simeq 0.7 \div 0.8$.

216

Рис. 4. Зависимость емкости ог напряжения при налични ОС (T=300°K, 0=8 ом см).

т. е. приближается к линейной. Это указывает на то, что при больших давлениях контакт приближается к омическому.

Поскольку барьерная емкость для сферического контакта (без учета окисного слоя) обычно определяется выражением [8]

$$C_{i} = 2 \pi r_{i}^{2} \sqrt{\frac{\varepsilon \varepsilon_{0} n_{\kappa} e}{2 (\psi_{k} + U)}}, \qquad (1)$$

то резкий рост емкости на участке ВАХ перед ОС, а затем ее спад могут иметь место с ростом приложенного напряжения при поляризации и «деполяризации» кристалла под контактом. Сказанное следует также из переходных характеристик. Из рис. 1 *а*, *б*, *в* следует, что с ростом приложенного напряжения уменьшается время задержки (поляризации) t_1 , а также время переключения на ВАХ (t_2-t_1). Однако резкий спад емкости на участке ОС однозначно указывает на то, что формирование ОС связано с концентрационным механизмом.

Согласно [9, 10], при одноосном сжатии германия существенно уменьшается ширина запрещенной зоны, образуются дефекты с глубокими уровнями, что приводит к росту тока в переходах с давлением как за счет уменьшения ширины запрещенной зоны, так и из-за генерации носителей тока в области объемного заряда.

Время установления равновесия между объемом полупроводника а быстрыми поверхностными состояниями — порядка 10^{-7} сек (контакт при больших давлениях тесный), поэтому индуктивный характер реактивности на рисунках следует приписать глубоким центрам. Хотя глубокие центры в статическом режиме проводят поставку носителей в зону проводимости, при указанных частотах они не успевают полностью перезарядиться.

Дальнейший рост емкости перед срывом объясняется образованием инверсионного слоя. Образование инверсионного слоя облегчается еще тем, что при некоторых давлениях, когда n_t приближается к N_g, уровень Ферми сдвигается к середине запрещенной зоны.

Уменьшение задержки (t_2-t_1) с ростом приложенного напряжения косвенно указывает на тот факт, что с ростом поля растет сечение захвата электронов глубокими центрами, поэтому средняя частота захвата растет с полем и время задержки уменьшается. Отсюда следует, что при некоторых полях $E=E_{\rm кр}$ имеет место интенсивный захват электронов на рекомбинационный центр, сопровождающийся падением концентрации, а, следовательно, и емкости. Рекомбинация в приповерхностном слое значительно усиливается при одновременном образовании инверсионного слоя, так как изменяется положение квазиуровня Ферми в приповерхностном слое по.отношению к уровням прилипания и рекомбинации. С этой точки зрения подход к решению указанной задачи в [11] представляется правильным.

Институт радиофизики и электроники АН АрмССР

Поступила 20.V.1975

ЛИТЕРАТУРА

1. Э. Г. Меликян. ФТП, 7, 1022 (1973).

2. Э. Г. Меликям. ФТП, 7, 2053 (1973).

3. Э. Г. Меликян, Г. Г. Бабаян. ФТП, 7, 1664 (1973).

4. B. Elliot, J. Gunn, J. Mc Groddy. Appl. Phys. Lett., 11, 253 (1967).

5. J. Mc Groddy, M. Nathan. IMB J. Res. Dev., 11, 337 (1967).

 В. Л. Бонч-Бруевич, И. П. Звязин, А. Г. Миронов. Доменная электрическая неустойчивость в полупроводниках, Изд. Наука, 1971.

7. Э. Г. Меликян. Радиотехника и электроника. 12, 1521 (1967).

8. С. С. Гутин и др. Сб. Физика полупроводников, СО АН СССР, Новосибирск, 1968. 9. W. Bernard, W. Rinder, H. Roth. J. Appl. Phys., 35, 1860 (1964).

10. А. Л. Полякова. Акустический журнал, 18, 1 (1972).

11. Г. М. Авакьянц, Э. Г. Меликян. ФТП, 6, 2232 (1972).

ፈՆՇՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՄԵՏԱՂ–ԿԻՍԱՀԱՂՈՐԴԻՉ ԿՈՆՏԱԿՏԻ ՎՈԼՏ–ԱՄՊԵՐԱՅԻՆ ԲՆՈՒԹԱԳՐԻ ՎՐԱ

ՅՈՒ. Ա. ԱԲՐԱՄՅԱՆ, Ռ. Հ. ՍԻՄՈՆՅԱՆ, Վ. Ա. ՀԱՐՈՒԹՅՈՒՆՈՎ

Հետաղոտված են բարձր ճնշման տակ գտնվող մետաղ—գերմանիում կոնտակտի վոլտ-ֆարադային և անցումային բնութագրերը։ Յույց է տրված, որ բացասական դինամիկ Հաջորդականունյան առաջացումը վոլտ-ամպերային բնութագրի վրա կատված է կոնցենտրացիոն մեխանիզմի Հետո

THE INFLUENCE OF PRESSURE ON VOLTAGE-CURRENT CHARACTERISTIC OF METAL-SEMICONDUCTOR CONTACT

Yu. A. ABRAMYAN, R. H. SIMONYAN, V. A. ARUTYUNOV

Capacity-voltage and transition characteristics of metal-germanium contact are investigated at high pressures. The formation of the negative differential conductivity on VCC is shown to be connected with the concentration mechanism.

О ПЕРЕНОСЕ ЭНЕРГИИ ВОЗБУЖДЕНИЯ В ЖИДКИХ ИОННЫХ РАСТВОРАХ УРАНИНА

Л. Т. КАНТАРДЖЯН, А. И. ОГАНИСЯН

Наблюдаемое уменьшение выхода и средней длительности флуоресценции водных растворов уранина малых концентраций при переходе от $10N H_2SO_4$ к менее кислым растворам объяснено межнонным переносом энергии электронного возбуждения от катиона к однозарядному аниону по механизму индуктивного резонанса путем образования ионных пар.

Экспериментально установлено уменьшение выхода и средней длительности флуоресценции водных растворов уранина^{*} малых концентраций в промежуточной области pH примерно от 1 до 5 по сравнению с сильнощелочными и сильнокислыми растворами [1, 2]. В растворах с промежуточными значениями pH присутствует несколько люминесцирующих ионных форм уранина—катион, хиноидная форма нейтральной молекулы, одно- и двухзарядные анионы, а также нелюминесцирующая лактонная форма нейтральной молекулы, относительные концентрации которых определяются значениями pH раствора. В предельных случаях сильнощелочного и сильнокислого растворов присутствуют соответственно только двузарядный анион и катион [6], спектрально-люминесцентные параметры которых, в отличие от других ионных форм, можно непосредственно измерить.

Уменьшение выхода и средней длительности свечения растворов с одновременным содержанием нескольких ионных форм флуоресцеина Розвадовским [1] объяснено протолитическими реакциями, происходящими в возбужденном состоянии, при допущении равенства квантовых выходов В и средних длительностей флуоресценции т всех ионных форм.

Наблюдаемое в [1] несоответствие pH-области существования катиона флуоресценна при pH \leq 2 по спектрам поглощения и флуоресценции объяснено уменьшением энергии диссоциации катиона в возбужденном состоянии. Вследствие этого последний в возбужденном состоянии депротонируется, как указано там же, аналогично 3-аминопирен-5, 8,10-трисульфонату Na, описанному Фёрстером [7], что и обуславливает уменьшение выхода. Далее, в [1] для объяснения сокращения средней длительности флуоресценции предполагается обратимость протолитической реакции, сопровождающейся захватом протона возбужденным анионом с превращением его в нефлуоресцирующую лактонную форму.

С другой стороны, известно, что отщепление протона в возбужденном состоянии облегчено в группах ОН и NH₂. В структурах флуоресцеина все протоны находятся в ОН-группах, поэтому депротонирование разных ион-

^{*} В работах [3—5] показано совпадение характерных спектральных полос ионных форм уранина (Na-флуоресценна) и флуоресценна, а также идентичность зависимости от pH спектров поглощения и люминесценции обеих молекул.

ных форм в возбужденном состоянии должно быть равновероятным. Из-за малой концентрации водородных ионов в растворе в рН-области существования хинонда и однозарядного аниона вероятность отщепления протона последними в возбужденном состоянии должна быть больше, чем такая вероятность для возбужденного катиона, однако здесь депротонизации не происходит, что подтверждается полным совпадением рН-областей существсвания хинонда и однозарядного аниона флуоресцеина по спектрам поглощения и флуоресценции [2]. Определенная Цанкером и Петером [8] при помощи спектров логлощения величина рК для пары катион—хиноид равна 1,95, что означает содержание примерно в равных количествах катиона и нейтральной молекулы в растворе флуоресцеина при рН=1,95.

В настоящей работе уменьшение выхода и средней длительности флуоресценции уралина в области промежуточных значений рН объясняется межионным переносом энергии воэбуждения от катиона к однозарядному аниону по механизму индуктивного резонанса.

Нами были исследованы кислые водные растворы уранина с различными значениями рН. Кислые растворигели получались добавлением к дважды дистиллированной воде H_2SO_4 . Измерения рН растворов и растворителей производились при помощи прибора рН-340 со стеклянным электродом. Спектры поглощения измерялись регистрирующим спектрофотометром СФ-10. Для обеспечения относительной ошибки измерений, не превосходящей удвоенного значения ее минимума, достигаемого при D=0,43, толщины кювет подбирались таким образом, чтобы оптическая плотность D большей части полосы поглощения раствора была в интервале от 0,2 до 1,6 [9]. Спектры люминесценции и абсолютные квантовые выходы измерялись на фотовлектрической установке, описанной в [2].

Для уточнения рH-областей существования протомерных форм уранина в кислой области нами были измерены спектры поглощения растворов с концентрациями красителя 2,66 $\cdot 10^{-5}$ моль n^{-1} в интервале от pH=4,1 до 10N H₂SO₄, некоторые из которых приведены на рис. 1. Спектральная кривая раствора с pH=4,1 двугорбая с равными максимумами при 455 и 475 нм (рис. 1a, кривая 1). Она представляет собою результат наложения спектрсв поглощения присутствующих в растворе катиона, хиноида, однои двухзарядного анионов. При pH=3,4 в растворе увеличивается содержание катиона за счет уменьшения доли других протомерных форм. Спектральная кривая (рис. 1a, кривая 2) состоит из характерной полосы катиона с максимумом при 440 нм [6] и длинноволнового «плеча», обусловленного хиноидом и однозарядным анионом. Повышение кислотности раствора до pH=2,3 приводит к усилению полосы поглощения катиона и к резкому уменьшению длинноволнового «плеча» (рис. 1a, кривая 3).

С целью повышения точности измерений в длинноволновой части спектра нами были дополнительно проведены измерения растворов с увеличением их оптической плотности D. Несмотря на меньшую концентрацию красителя $C = 1,33 \cdot 10^{-5}$ моль n^{-1} выявление «плеч» оказалось довольно отчетливым (рис. 16, кривые 1 и 2). Эти изменения спектра вызваны почти полным превращением всех ионных форм в катион и, следовательно, пре-

Рис. 1. Спектры поглощечия: а) концентрацая $C = 2,66 \cdot 10^{-5}$ мсль λ^{-1} , толщина кюветы l = 10 мч; 1 - pH = 4.1; 2 - pH = 3.4; 3 - pH = 2.3; $4 - 2NH_2SO_4$ (0,2 < pH < 1); $5 - 5NH_2SO_4$; б козцентрацая $C = 1,33 \cdot 10^{-5}$ моль λ^{-1} , толщина кювсты l = 50 мм; 1 - pH = 3.4; 2 - pH = 2.3.

обладанием последнего в растворе. Однако с увеличением кислотности раствора и дальше продолжается усиление полосы катиона (рис. 1*a*, кривые 4 и 5), что можно объяснить протонизацией лактонной формы нейтральной молекулы, доля которой относительно хиноида больше в растворах с малой исходной концентрацией красителя [10]. Таким образом, спектр поглощения становится полностью катионным при достижении кислотности раствора, равной 5N H₂SO₄, а не при рH=2, как это указывается в [1]. Сравнение рис. 1*a* и 2^{*} подтверждает полное совпадение pH-областей существования катиона по спектрам поглощения и флуоресценции.

Рис. 2. Спентры флуорэсцэнцин: концентрация $C = 2,55 \cdot 10^{-5}$ моль x^{-1} ; 1 — pH=4,0; 2 — pH = 3,2; 3—2 NH_2SO_4 (0,2 < pH < 1); 4—5 NH_2SO_4 .

 Измерения спектров растворов производились в достаточно тонких кюветах, практически исключающих реабсорбцию излучения.
 373—5

В табл. приведены значения абсолютных квантовых выходов раство ров уранина с концентрацией $C = 2,66 \cdot 10^{-5}$ моль n^{-1} при возбуждении характерных полосах поглощения отдельных ионных форм [2].

	Таблица	
<i>гН</i> раствора	Абсолютный кв. выход В	
$ \begin{array}{c} 10 \ N \ H_2 SO_4 \\ 5 \ N \ H_2 SO_4 \\ 1 \\ 3 \\ 5 \end{array} $	0,3 0,2 0,1 0,1 0,1	

Из табл. видно, что в растворах кислотности 10N H_2SO_4 выход раве: 0,3, который с уменьшением кислотности падает до 0,1 и в довольно широ ком интервале изменения pH от 1 до 5 остается неизменным. Одновремен но с падением выхода происходит сокращение средней длительности флуо ресценции т катиона. Согласно измерениям Розвадовского [1], т умень шается от 4,41 до 3,21·10 ⁹ сек при изменении кислотности раствора о 10N H_2SO_4 до pH=2,13. Это обстоятельство делает целесообразным об суждение возможности межионного переноса электронной энергии воз буждения.

Непосредственное экспериментальное измерение спектров поглощения промежуточных ионных форм не представляется возможным, поэтому для определения степени перекрытия спектров флуоресценции и поглощения мы воспользовались спектрами поглощения, рассчитанными в работе [6]. Не основании этих спектров были вычислены средние коэффициенты поглощения тушителя α , рассчитанные на одну молекулу и усредненные по спектрам флуоресценции катиона,

$$\alpha = \int F(v) \alpha(v) dv / \int F(v) dv,$$

где $\alpha(v)$ — спектр поглощения тушителя, а F(v) — спектр флуоресценции катиона, выраженный в числе квантов [11]. Получены значения α для пары катион—хиноид — 0,055 · 10⁻¹⁶ и для катион—однозарядный анион — 0,95 · 10⁻¹⁶. Вычисленное критическое расстояние R_0 переноса энергии от катиона к однозарядному аниону равно 21 Å.

Допустив образование в исследованных растворах ионных пар [12], возникающих вследствие электростатического притяжения между катионом и однозарядным анионом уранина, с расстоянием порядка R_0 между партнерами в парах, можно будет наблюдаемое параллельное изменение выхода B и средней длительности флуоресценции т объяснить безызлучательным переносом энергии электронного возбуждения внутри пары от донора — катиона к акцептору — однозарядному аниону по механизму индуктивного резонанса. Этот перенос приводит к сенсибилизированной флуоресценции однозарядного аниона с весьма малым выходом. Поскольку описанные экспериментальные факты имеют место также в вязких растворах [2], то это говорит в пользу индуктивно-резонансного механизма переноса энергии возбуждения в кислых растворах уранина.

Поступила 15.IV.1975

ЛИТЕРАТУРА

- 1. M. Roswadowski. Acta Phys. Polon., 20, 1005 (1961).
- 2. Л. Т. Кантарджян. Кандидатская диссертация, Ин-т физики АН БССР, Минск, 1966.
- 3. Л. Т. Кантарлжян. Изв. АН СССР, сер. физ., 23, 131 (1959).
- 4. Э. В. Григорян, Л. Т. Кантарджян, С. С. Чиркинян. Изв. АН СССР, сер. физ., 24, 771 (1960).
- 5. В. С. Адамов, Л. Т. Кантарджян. ЖФХ, 36, 376 (1962).
- 6. Л. Т. Кантаражян, С. С. Чиркинян, М. Б. Чрян. Изв. АН СССР, сер. физ., 32, 1534 (1968).
- 7. Th. Förster. Z. Elektrochem., 54, 42 (1950); Naturwissenschaft, 36, 186 (1949).
- 8. V. Zanker, W. Peter. Chem. Ber., 1, 572 (1958).
- 9. П. П. Комарь, В. П. Самойлов. ЖАХ, 18, 1284 (1963).
- 10. М. А. Аветисян и др. Изв. АН СССР, сер. физ., 27, 796 (1963).
- 11. М. Д. Галанин, Л. В. Левшин. ЖЭТФ, 21, 121 (1951).
- 12. С. Глесстон. Введение в электрохимию, Изд. ИЛ, М., 1951.

በኮቦԱՆԻՆԻ ՀԵՂՈՒԿ ԻՈՆԱԿԱՆ ԼՈՒԾՈՒՅԹՆԵՐԻ ԳՐԳՌՄԱՆ ԷՆԵՐԳԻԱՅԻ ՓՈԽԱՆՑՄԱՆ ՄԱՍԻՆ

1. S. ՂԱՆԹԱՐՋՅԱՆ, Ա. Ի. ՀՈՎՀԱՆՆԻՍՅԱՆ

Ցլուորեսցենցիայի ելքի և միջին տևողության փոքրացումը ուրանինի ջրային նոսը լուծույβներում pH-ի 1—5-ի տիրույթում բացատրվում է էլեկտրոնային գրգոման էներգիայի փոկանցումով կատիոնից մեկ լիցքանի անիոնին, Համաձայն ինդուկտիվ-ռեղոնանսային մեկանիղմի, իոնական ղույգերի առաջացման հետևանքով.

ON THE TRANSFER OF EXCITATION ENERGY IN LIQUID IONIC SOLUTIONS OF URANINE

L. T. KANTARDZHYAN, A. I. OGANISYAN

The observed decrease of the yield and the mean duration of fluorescence of an aqueous solution of uranine at the transition from the $10 N H_2SO_4$ to a less acid solution is explained as being due to the interionic transfer of electronic excitation energy from the cation to the singly charged anion according to the mechanism of inductive resonance by means of the formation of ionic pairs.

and water the second second

СТРУКТУРА СШИТОГО ПОЛИЭТИЛЕНА, ЗАКРИСТАЛЛИЗО-ВАННОГО ПРИ НАЛИЧИИ МОЛЕКУЛЯРНОЙ ОРИЕНТАЦИИ

Р. С. ПОГОСЯН, В. И. ГРОМОВ, А. Г. БОЯДЖЯН, Г. Т. ОВАНЕСОВ, В. Г. БАРАНОВ, Ю. К. КАБАЛЯН

Проведено изучение влияния молекулярной ориентации в расплаве сшитого полиэтилена на надмолекулярную организацию закристаллизованных образцов. Показано,-что растяжение расплава и его кристаллизация в изотермических условиях практически полностью воспроизводят надмолекулярную организацию волокон при положительной фильерной вытяжке.

Отверждение полимерных волокон и пленок при формовании из расплава происходит в довольно сложно описываемых условиях при одновременном воздействии на расплав различных скоростных и температурных градиентов. Поэтому далеко не всегда удается в чистом виде разделить эффекты теплового и механического воздействия на процессы кристаллизации и образования надмолекулярной структуры и оценить их влияние на структуру и свойства волокон и пленок. В настоящей работе делается попытка исключить из рассмотрения температурные градиенты с целью выяснения роли молекулярной ориентации на структуру образцов, закристаллизованных в изотермических условиях.

Основные исследования были проведены на полиэтилене среднего давления (ПЭСД), пленки которого получались на экструдере в режиме, описанном в работе [1], при отсутствии фильерной вытяжки. Пленки ПЭСД толщиною около 500 жкм и шириною 30 мм затем подвергались п, у-облучению в реакторе общей дозой 43 мрад. Дальнейшее плавление и кристаллизация сшитых образцов ПЭСД проводились в специальных термостатах с растягивающим устройством в трех режимах. Первый заключается в прогреве образца до $T_i > T_{na}$, растяжении его в λ раз при этой температуре и последующей кристаллизации в растянутом состоянии в изотермических условиях при T₂, равной 60 или 100°С. При этом деформация образца при Т₁=160°С полностью обратима, т. е. сшивка образца вполне достаточна для того, чтобы предотвратить его течение. Для сравнения в тех же температурных условиях проводилась «обычная» изотермическая кристаллизация (режим II), а необходимые для сравнения удлинения (λ) проводились уже в полностью закристаллизованном образце. Изменение микро--скопических и дифракционных картин в поляризованном свете наблюдалось при комнатной температуре на микроскопе МИН-8 по методике, описанной в работе [2]. Рентгеноструктурный анализ проводился как с использованием приборов и методик, применяемых в нашей лаборатории [3]. так и при помощи некоторых других приемов наблюдения и регистрации рентгеновского рассеяния. В частности, для более четкого и наглядного анализа азимутального распределения интенсивности фоторегистрация проводилась в текстур-камере на цилиндрическую пленку с различной ориентацией: образца относительно падающего пучка и пленки.

Схема съемки широкоугловых рентгенограмм на цилиндрическую пленку приведена на рис. 1, а соответствующие рентгенограммы образца ПЭСД, полученного в режиме II (при $\lambda_c = 8.0$ (с-текстура), $T_1 = 160^{\circ}$ С и:

Рис. 1. Схема наблюдения текстуррентгенограмм: *1*=43 мм, *d*=180 мм, *a* н б — различные ориентации образца (*a*=0°, 6=17,5° от вертикали).

 $T_2 = 100^{\circ}$ С), — на рис. 2. На рис. 3 приведены снятые при комнатной темъпературе H_v -картины рассеяния поляризованного света (*a*), обычные широкоугловые (*б*) и малоугловые (*в*) рентгенограммы пленок ПЭСД, полученных в режиме I при λ , меняющемся от 1,2 до 4, и $T_2 = 100^{\circ}$ С.

Рис. 2. Текстуррентгенограммы ориентированного полнятилена: а и б соответствуют ориентациям образца, указанным на рис, 1.

Рассмотрим прежде всего закономерности изменения оптического уровня надмолекулярной организации с ростом λ . Качественный анализ изменений картин рассеяния света (см. рис: За) при увеличении степени удлинения расплава показывает, что при малых и средних λ сферолиты в об-

Рис. 3. Влияние молекулярной ориентации в расплаве (), на H_v дифрактограммы (a), широкоугловые (б) и малоугловые (в) рентгенограммы.

разце сплюснуты относительно направления растяжения, но при достаточно больших λ имеет место переход от сплюснутых сферолитов к единичным рассеивающим влементам, наибольший размер которых совпадает с направлением действия растягивающего усилия. Как следует из рисунка, картины рассеяния для этих структур сходны с дифрактограммами для сплюснутых сферолитов [1, 4], но повернутыми на $\pi/2$. Поляризационномикроскопические наблюдения показывают, что в тех областях удлинения, где сферолиты сплюснуты, в поле зрения микроскопа видны двулучепреломляющие шаровидные агрегаты с темным мальтийским крестом, имеющие отрицательный знак двулучепреломления, характерный для сферолитов поливтилена. При переходе к удлиненным рассеивающим элементам в микроскопе по-прежнему наблюдаются сферолитоподобные агрегаты (т. е. с мальтийским крестом и т. д.), но знак их двулучепреломления меняется. При очень больших удлинениях образец становится сильно двулучепреломляющим, и в нем уже нет наблюдаемых в оптический микроскоп надмолекулярных образований.

Детальный анализ таких картин рассеяния и соответствующей им структуры был проведен ранее [4], поэтому обратимся далее к анализу надмолекулярной структуры, развивающейся при кристаллизации сшитых образцов ПЭСД, на рентгеновском уровне. Для этого вернемся к рис. 3, на котором приведены широко- и малоугловые рентгенограммы ПЭСД, закристаллизованного в режиме І при некоторых фиксированных λ. По мере увеличения степени вытяжки расплава наблюдаются следующие изменения широкоугловых рентгенограмм. При малых λ происходит текстурирование всех рефлексов: рефлекс (200) стягивается в меридианальную дугу, а рефлексы (110) и (020) — в экваториальные дуги. Такое текстурирование рефлексов (110) и (200) обычно [5] отождествляется с переходом системы в а-текстуру, а стягивание рефлекса (020) в дугу на экваторе означает, что уже при малых λ ось b ориентируется преимущественно нормально к направлению растяжения. Однако очень широкие азимутальные полуширины дуг рефлексов (110) и (200) позволяют сразу же предположить, что эти дуги представляют собой наложение двух неразрешенных по азимуту рефлексов. В самом деле, уже при $\lambda = 1,7$ рефлекс (110) расщепляется по азимуту, а при дальнейшем увеличении λ наблюдается расщепление и рефлекса (200). При этих переходах рефлекс (020) еще более стягивается и остается на экваторе. Рентгенограммы этого типа уже однозначно указывают на появление «косой» текстуры [6].

Дальнейшее увеличение λ приводит к перемещению расщепленных рефлексов (110) и (200) к экватору, что указывает на уменьшение угла 🕈 и постепенный переход к с-текстуре (отметим, однако, чго для сшитых образцов полиэтилено нам ни разу не удалось ее достичь). Наиболее наглядно переход от «а-текстуры» к «косой» (в-текстуре) виден из рентгенограмм, снятых на цилиндрическую пленку в текстур-камере по схеме, приведенной на рис. 1. Используя рентгенограммы типа приведенных на рис. 4, по азимутальной ориентации рефлексов (200) и (110) (при (020) на экваторе) можно рассчитать углы θ при различных λ. Эти результаты приведены на рис. 5, из которого следует, что $\vartheta = \pi/2$ при малых λ , а по мере роста степени растяжения расплава угол в уменьшается, достигая ~ 50°. На этом же рисунке даны величины больших периодов Lo, определенные по положению максимума интенсивности рассеяния в меридианальном направлении на малоугловых рентгенограммах (см., напр., рис. 1). Из рис. 5 следует, что численные значения L₀ не зависят от величины λ, однако качественно малоугловые рентгенограммы с ростом λ претерпевают значительные изменения. При малых λ распределения интенсивности имеют форму овала, вытянутого в направлении растяжения и имеющего в этом направлении сгущения, по положению которых мы и определяли L₀. Приблизительно в области λ=1,5 наблюдается переход к рефлексам с двумя порядками отражения и только при λ>1,7 появляются обычные для а- и θ-текстуры рефлексы «каллевидной» формы [6, 7]. Отметим, что в нашем случае для ϑ -текстуры

Рис. 4. Текстуррентгенограммы ()-текстуры: а и б соответствуют ориентациям образца, указанным на рис. 1.

Рис. 5. Зависимость угла ориентации оси «С» и величны большого периода от кратности вытяжки расплава.

наблюдается до трех порядков отражения (с отношением угловых расстояний 1:2:3), что свидетельствует о высокой степени упорядоченности в чередовании в направлении растяжения областей с различной электронной плотностью.

Авторы приносят искреннюю благодарность А. Васяку (ИФПТ, ПНР) за съемку текстуррентгенограмм и Б. М. Гинзбургу за обсуждение результатов.

ВНИИПолимер ИВС АН СССР, Ленинград

Поступила 20.111.1975

ЛИТЕРАТУРА

1. Т. И. Волков и др. Механика полимеров, 2, 207 (1969).

2. Т. И. Волков. Высокомол. соедин., А9, 2734 (1967).

Б. М. Гинзбург. Автореферат канд. диссертации, ИВС АН СССР, Ленинград, 1967.
 Т. И. Волков и др. Механика полимеров, 1, 3 (1971).

5. S. L. Aggarwal, G. P. Tilley, O. J. Sweeting. J. Appl. Polymer Sci., 1. 91 (1959) 6. K. Katayama, T. Amano, K. Nakamura. Kolloid. Z. U. Polymere, 256, 125 (1968). 7. В. И. Герасимов, Д. Я. Цванкин. Высокомол. соедин., 12А, 2599 (1970).

ԿԱՊՎԱԾ ՊՈԼԻԷԹԻԼԵՆԻ ԿԱՌՈՒՑՎԱԾՔԸ ԲՑՈՒՐԵՂԱՑՎԱԾ ՄՈԼԵԿՈՒԼՅԱՐ ԴԱՍԱՎՈՐՎԱԾՈՒԹՅԱՆ ԱՌԿԱՅՈՒԹՅԱՆ ՊԱՅՄԱՆՆԵՐՈՒՄ

ቡ. Ս. ՊՈՂՈՍՏԱՆ, Վ. Ի. ԳՐՈՄՈՎ, Ա. Հ. ԲՈՏԱՋՏԱՆ, Գ. Թ. ՕՎԱՆԵՍՈՎ, Վ. Գ. ԲԱՐԱՆՈՎ, ՏՈՒ. Կ. ԿԱԲԱԼՏԱՆ

Ուսումնասիրված է կապված պոլիէթիլննի Տալույթում մոլնկուլյար դասավորվածության աղդնցությունը բյուրնդացված նմուշների արտամոլնկուլյար կազմության վրա։ Ցույց է տրված, որ Տալույթի ձգումը և նրա բյուրնդացումը իզոթերմ պայմաններում գործնականորեն լրիվ վերականդնում են դրական ֆիլերային ձգման ժամանակ թելիկների արտամոլնկուլյար կազմությունը։

THE STRUCTURE OF CROSSLINKED POLYETHYLENE CRYSTALLIZED IN THE PRESENCE OF MOLECULAR ORIENTATION

R. S. POGOSYAN, V. I. GROMOV, A. G. BOYADZHYAN, G. T. OVANESSOV, V. G. BARANOV, Yu. K. KABALYAN

The effect of molecular orientation in the melt of crosslinked polyethylene on the permolecular organization of the crystallized samples is studied. It is shown that the stretching of the melt and his crystallization in the isothermal conditions recover the permolecular organization of positive filier extract.

КРАТКИЕ СООБЩЕНИЯ

ОБРАТНОЕ ТОРМОЗНОЕ ИЗЛУЧЕНИЕ И ОБРАЗОВАНИЕ ПАР ПРИ ВЫСОКИХ ЭНЕРГИЯХ

С. М. ДАРБИНЯН, К. А. ИСПИРЯН

В последние годы возрос интерес к сильным и электромагнитным трехчастичным взаимодействиям. Экспериментальное исследование таких электромагнитных процессов при малых энергиях стало возможным благодаря существованию плотных фотонных лазерных пучков. Оптимистические оценки, приведенные недавно Диамбрини—Палаззи [1] для электромагнитного трехчастичного процесса при высоких энергиях, а именно, обратного тормозного излучения

$$\gamma + e + A \to e + A, \tag{1}$$

показывают, что в настоящее время можно не только экспериментально наблюдать реакцию (1), но и использовать ее для самоускорения электронов высоких энергий.

Настоящая работа посвящена теоретическому исследованию реакции (1) и реакции обратного образования пар на ядрах

$$e^+ + e^- + A \rightarrow \gamma + A. \tag{2}$$

В отличие от качественных ссображений, приведенных в [1], результаты данной работы содержат основные характеристики этих процессов и показывают, что при высоких энергиях экспериментальное исследование реакции (1) затруднительно, но не безнадежно, в то время, как экспериментальное наблюдение реакции (2) почти невозможно.

Вычисления проведены в борновском приближении с учетом экспоненциального экранирования поля ядра атомными электронами; при этом мы пользовались известными выражениями для матричных элементов соответствующих прямых процессов. Так как в начальном состоянии имеются три частицы, то вместо обычного сечения мы вычисляем «скорость реакции» [2]

$$R = \frac{dN/dtdV}{j_1 n_2 n_3} , \qquad (3)$$

где dN/dtdV—число событий в единицу времени и в единице объема взаимодействия, j_1 —плотность потока частиц 1, n_2 , n_3 —плотности частиц 2 и 3 (ядро).

В случае реакции (1), опуская довольно громоздкое выражение для R_i , когда угол между импульсами падающего электрона и фотона $\theta_i \neq 0$, мы приводим результат при $\theta_i = 0$ после интегрирования по углам вылета конечного электрона (в приближении больших энергий и малых углов)

$$R_{1}(E) = 16 \pi^{2} Z^{2} z^{3} \lambda_{e}^{5} \frac{m(1+x)}{E x^{3} (1-\gamma^{2})^{2}} \left[-2 - \frac{E x \varepsilon (1-\gamma^{2})}{m} - \left(\frac{1+\gamma^{2}}{1-\gamma^{2}} + \frac{E x \varepsilon}{m} \right) \ln \gamma^{2} \right], \qquad (4)$$

где Z— заряд ядра, $\alpha = 1/137$, m и E— масса и энергия электрона, λ_e — комптоновская длина волны, $x = \omega/E$ (ω — энергия фотона), $\gamma^2 = \varepsilon^2 + p^2$, $p = \alpha Z^{1,3}$, $\varepsilon = \delta/m$, $\delta = m^2 \omega/2E$ ($E + \omega$).

Для иллюстрации на рисунке показана зависимость R_1 от E при различных значениях х и $y=\theta_1/(m/E)$ для Z=74. Пунктирная кривая соответствует вычислениям без учета экранировки (p=0) и показывает, что экранировка существенна. Как видно из рисунка и формулы (4), зависимость R_1 от x имеет вид $1/x^3$, а от E—вид 1/E, тогда как зависимость от y—более сложная, но R_1 падает с увеличением y.

Зависимость R_1 от E при разных значениях x и y = 0, 1, 2, 3: кривые 1, 2, 3, $4 - x = 10^{-2}$; 5, 6, 7, $8 - x = 10^{-1}$; 9, 10, 11, 12 - x = 1; $13 - x = 10^{-2}$, y = 0, p = 0 (без экранировки).

В случае реакции (2), когда угол между электроном и позитроном $\theta_1 = 0$, после интегрирования по углам вылета фотона имеем .

$$R_{2} = 16 \pi^{\epsilon} Z^{2} \alpha^{3} \lambda_{e}^{5} \frac{m\epsilon_{+} \epsilon_{-}}{\omega^{3} \gamma^{2}} \left\{ \frac{U_{-} + 2}{U_{-}^{2}} + \frac{U_{+} + 2}{U_{+}^{2}} - \frac{2}{U_{+} U_{-}} - \frac{\gamma^{2}}{2U_{+} U_{-}} \times \left(\frac{\epsilon_{+}}{\epsilon_{-}} + \frac{\epsilon_{-}}{\epsilon_{+}} \right) - 2 \frac{U_{-} + 1}{U_{-}^{2}} \left[\frac{1}{U_{-}} + \frac{4 \epsilon_{-}^{2} + \omega^{2} (\epsilon_{+} / \epsilon_{-} + \epsilon_{-} / \epsilon_{+})}{4 (\epsilon_{-}^{2} - \epsilon_{+}^{2})} \right] \ln(U_{-} + 1) - \frac{1}{2U_{+} U_{-}} + \frac{1}{U_{-}^{2}} \left[\frac{1}{U_{-}} + \frac{4 \epsilon_{-}^{2} + \omega^{2} (\epsilon_{-} / \epsilon_{-} + \epsilon_{-} / \epsilon_{+})}{4 (\epsilon_{-}^{2} - \epsilon_{+}^{2})} \right] \ln(U_{-} + 1) - \frac{1}{U_{-}^{2}} \left[\frac{1}{U_{-}} + \frac{1}{U_{-}^{2} + \omega^{2} (\epsilon_{-} / \epsilon_{-} + \epsilon_{-} / \epsilon_{+})}{4 (\epsilon_{-}^{2} - \epsilon_{+}^{2})} \right] \ln(U_{-} + 1) - \frac{1}{U_{-}^{2} + \omega^{2} (\epsilon_{-} / \epsilon_{-} + \epsilon_{-} / \epsilon_{+})}{4 (\epsilon_{-}^{2} - \epsilon_{+}^{2})} \left[\frac{1}{U_{-}^{2} + \omega^{2} (\epsilon_{-} / \epsilon_{-} - \epsilon_{+} / \epsilon_{+} / \epsilon_{+})}{4 (\epsilon_{-}^{2} - \epsilon_{+}^{2})} \right] \ln(U_{-} + 1) - \frac{1}{U_{-}^{2} + \omega^{2} (\epsilon_{-} / \epsilon_{+} - \epsilon_{+} / \epsilon_{+})}}$$

$$-2\frac{U_{+}+1}{U_{+}^{2}}\left[\frac{1}{U_{+}}+\frac{4\varepsilon_{+}^{2}+\omega^{2}\left(\varepsilon_{+}/\varepsilon_{-}+\varepsilon_{-}/\varepsilon_{+}\right)}{4\left(\varepsilon_{+}^{2}-\varepsilon_{-}^{2}\right)}\right]\ln\left(U_{+}+1\right)\right]\cdot$$
(5)

Здесь ω , ε_+ и ε_- энергии фотона, позитрона и электрона, $\omega = \varepsilon_+ + \varepsilon_-$, $\gamma^2 = \varepsilon^5 + p^2$, $p = aZ^{1/3}$, $\varepsilon = \delta/m$, $\delta = m^2\omega/2\varepsilon_+\varepsilon_-$, $U_{\pm} = \gamma^2\varepsilon_{\pm}^2/\omega^2 - 1$.

Как и следовало ожидать, R_2 симметрично относительно ε_+ и ε_- , Вычисления, проведенные с помощью формулы (5), показывают, что R_2 падает с ε_- как $1/\varepsilon_-$; при этом значения R_2 меньше соответствующих значений R_1 .

Рассмотрим теперь возможность экспериментального наблюдения реакцин (1). Предположим, что пучок электронов высокой энергии E падает на вольфрамовую мишень (Z=74) толщиной 1 рад. ед. Примем, что тормозные фотоны, образованные в первой половине мишени, во второй половине на электронах пучка вызывают реакцию (1). С помощью спектрометра, помещенного за мишенью, детектируются электроны с энергией, большей E. Так как разброс по энергиям электронов в начальном пучке и энергетическое разрешение спектрометра обычно порядка $\Delta E/E \leq 1\%$, то разумно рассмотреть только фотоны с $x \gtrsim 10^{-2}$. С другой стороны, поскольку $R_1 \sim 1/x^2$, а спектр фотонов тормозного излучения падает как $\sim 1/x$, то очевидно, что основной вклад в ожидаемое число событий дадут фотоны с $x \sim (0,5 \div 1,5) \cdot 10^{-2}$.

Оценим число событий для параметров ускорителя SLAC с E = 20 Гэв [3]. Считая, что пучок электронов имеет поперечные размеры $\sim 10^{-2}$ см², с помощью формулы (3) со значением $R_i \approx Z^2 \cdot 1,3 \cdot 10^{-53}$ см⁵ (принимается, что все фотошы летят под углом, соответствующим y=1) для числа событий получим $N \approx 0,5$ событий в час. Использование ускорителя SLAC в специальном режиме [4], когда плотность электронов в бунче увеличивается, но число бунчов и полное число электронов в секунду уменьшаются по сравнению с нормальным режимом работы ускорителя, не дает существенного увеличения числа событий.

Таким образом приходим к заключению, что в пределах технических возможностей современного эксперимента исследование реакции (1), т. е. наблюдение самоускорения электронов, является трудной задачей. Как отмечено в работе [1], можно ожидать, что эффект увеличится в монокристаллах, однако экспериментальное исследование реакции (1), а также более трудной реакции (2), может быть осуществлено на будущих более мощных ускорителях.

Авторы благодарят Г. М. Гарибяна и И. И. Гольдмана за полезные обсуждения.

Примечание при корректуре. Пока работа находилась в печати, появилась статья R. Barbieri et al. Phys. Lett., 61B, 196 (1976), в которой исследована реакция (1) и приведсна формула (4) без учета экранировки.

Ереванский физический институт

Поступила З.ІІІ.1976

ЛИТЕРАТУРА

- 1. G. Diambrini-Palazzi. Phys. Lett., 57B, 491 (1975).
- 2. Z. Fried. Nuovo Cim., 22, 1303 (1961).
- 3. М. Блюэтг, Н. Фолт-Нильсен. Каталог по ускорителям на высокие энергии. ЦНИИатоминформ, М., 1974.
- Труды 7-ой Международной конференции по ускорителям заряженных частиц высоких энергий, Ереван—Цахкадзор, 1969, Изд. АН АрмССР, 1970, т. 1, стр. 79.

ՀԱԿԱԳԱՐՁ ԱՐԳԵԼԱԿՄԱՆ ՃԱՌԱԳԱՑԹՈՒՄԸ ԵՎ ԶՈՒՑԳԵՐԻ ԱՌԱՋԱՑՈՒՄԸ ՄԵԾ ԷՆԵՐԳԻԱՆԵՐԻ ԴԵՊՔՈՒՄ

Ս. Մ. ԴԱՐԲԻՆՑԱՆ, Կ. Ա. ԻՍՊԻՐՑԱՆ

Բոռնի մոտավորուկյամբ Հաշվի առնելով միջուկի դաշտի էկրանավորումը Հաշվված են մեծ Հներգիաների գեպքում Հակադարձ արդելակման և զույգերի առաջացման «ռեակցիաների արագույքյունը»։ Քննարկված են այդ պրոցեսների փորձնական դիտման Տնարավորությունները։

* HIGH ENERGY INVERSE BREMSSTRAHLUNG AND PAIR PRODUCTION

S. M. DARBINYAN, K. A. ISPIRYAN

The "reaction rates" for inverse bremsstrahlung and pair production on nuclei are calculated in Born approximation taking into account the screening of nuclear field. The possibilities of experimental observation of these processes are discussed.

О ВОЗМОЖНОСТИ ГЕНЕРАЦИИ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ В ПАРАХ ЩЕЛОЧНЫХ МЕТАЛЛОВ ПРИ ДВУХФОТОННОЙ ОПТИЧЕСКОЙ НАКАЧКЕ

В. М. АРУТЮНЯН, Э. Г. КАНЕЦЯН, Н. В. ШАХНАЗАРЯН

В последнее время большой интерес вызывает получение когерентного излучения в УФ и вакуумной УФ областях путем генерации гармоник. В работах [1—5] исследовалась возможность генерации высших гармоник в парах щелочных металлов, где благодаря разонансам нелинейные восприимчивости на несколько порядков больше, чем в инертных газах. В этих экспериментах добавление буферного газа обеспечивало фазовый синхронизм основной частоты и гармоники. Возможность же использования аномальной дисперсии вблизи резонансных уровней для достижения фазового согласования [6] не реализуется из-за сильного атомного поглощения.

В настоящей работе сделана попытка использовать аномальную дисперсию, но не вблизи резонансных уровней, а вблизи точки компенсации вкладов дублетно расщепленных уровней [7—9] в показатель преломления среды.

Пусть две интенсивные монохроматические волны E_1 и E_2 с частотами ω_1 и ω_2 взаимодействуют с системой четырехуровневых атомов (см. рис.).

Предположим, например, что в атомах калия поле E_1 связывает состояние $4S_{1/2}$ (для простоты обозначим это состояние как 1) с дублетно расщепленными подуровнями $4P_{1/2}$ и $4P_{3/2}$ (2 и 3 соответственно), а ω_2 — резонансна с частотой перехода из $4P_{1/2}$ и $4P_{3/2}$ в $4D_{5/2}$ (состояние 4). Подобно тому, как это было сделано в работе [10], можно получить поляризуемости или показагели преломления этих волн. Оказывается, что если частота ω_1 (см., напр., [8]) удовлетворяет условию

$$\frac{|d_{12}|^2}{\varepsilon_1} + \frac{|d_{13}|^2}{\varepsilon_2} = 0, \tag{1}$$

вклады уровней $4P_{1/2}$ и $4P_{3|2}$ в показатели преломления компенсируются и n_1 и n_2 близки к единице. Здесь d_{ij} — матричные элементы дипольного момента для перехода из состояния i в состояние j, ε_i — расстройки резонансов, $\varepsilon_1 = \omega_{12} - \omega_1$, а $\varepsilon_2 = \omega_{13} - \omega_1$ (ω_{ij} — частота атомного i - j-перехода). Перестраивая частоту вблизи точки компенсации, определяемой условием (1), можно добиться точного синхронизма на ω_1 и частотах, далеких от резонансов.

В рассматриваемой системе возможно образование волн с частотами $3\omega_1$, $3\omega_2$, $\omega_1 + 2\omega_2$, $2\omega_1 + \omega_2$, $2\omega_1 - \omega_2$, $2\omega_2 - \omega_1$ и т. д. Рассмотрим, например, процесс преобразования частот ω_1 и ω_2 в $\omega_1 + 2\omega_2$. Поляризуемость $\chi_{\omega_1+2\omega_2}$, полученная с учетом всех промежуточных уровней, имеет вид

$$\chi_{\omega_1+2\omega_2} = \frac{1}{\hbar^3 \varepsilon_3} \left[\frac{d_{12}d_{24}}{\varepsilon_1} + \frac{d_{13}d_{34}}{\varepsilon_2} \right] \sum_m \frac{d_{4m}d_{m1}}{\varepsilon_m - 2\omega_2} \frac{(2\varepsilon_m + \omega_1 - \omega_2)}{(\varepsilon_m + \omega_1 + \omega_2)}, \quad (2)$$

а мощность волны с частотой $\omega_1 + 2\omega_2$, отнесенная к входной мощности поля E_1 , есть

$$W_{\omega_1+2\omega_2} = \left[\frac{2\pi N(\omega_1 + 2\omega_2)}{c}\right]^2 \gamma_{\omega_1+2\omega_2}^2 |E_2|^2 \frac{\sin^2(\Delta k x/2)}{(\Delta k_2/2)^2}$$
(3)

Здесь ε_3 — расстройка двухфотонного резонанса ($\varepsilon_3 = \omega_{14} - \omega_1 - \omega_2$), N — плотность атомов среды, а $\Delta k = k_{m_1+2m_2} - k_{\omega_1} - 2k_{\omega_2}$ ($k_{\omega} = \omega/c$). Оценки показывают, что для полей $E_2 \sim 10^5 \ s/cm$, при плотности атомов среды $N \sim 10^{16} \ am/cm^3$ и для расстроек $\varepsilon_1 = -40 \ cm^{-1}$, $\varepsilon_2 = 20 \ cm^{-1}$ и $\varepsilon_3 = -7 \ cm^{-1}$

$$W_{\omega_1+2\omega_3} = 3.7 \cdot 10^{-3} L^{20}/_0, \tag{4}$$

где L — длина синхронизма.

Пусть для двух частот $\omega_1 = \omega_0$ и $\omega_0 + 2\omega_2$ выполняется условие точного синхронизма, т. е. $\Delta k = k_{\omega_0 - 2\omega_2} - k_{\omega_0} - 2k_{\omega_2} = 0$; длина синхронизма при этом будет бесконечной. Для импульса со спектральной шириной $\Delta \omega$ фазовый синхронизм не нарушается до длины $2L_1$, определяемой из выражения

$$L_1 = \frac{\hbar c \varepsilon_2^2}{\Delta \omega 2 N \omega_1 |d_{13}|^2} \cdot$$
(5)

Вблизи точки компенсации (1) $\varepsilon_2 \sim 20 \ cm^{-1}$ (для атомов калия), при $N \sim 10^{16} \frac{am}{cm^3}$ и $\Delta \omega = 0,02 \ cm^{-1} L_1$ оказывается 50 см, т. е. при длине

кюветы с парами калия в 50 см импульс со спектральной шириной в 0,01 см⁻¹ полностью удовлетворяет условию синхронизма, и коэффициент преобразования в волну с частотой $\omega_1 + 2\omega_2$ на выходе из кюветы будет ~ 10%. Такого же порядка будет и мощность волны с частотой $2\omega_1 + \omega_2$.

В процессах образования волн с частотами $3\omega_1, 3\omega_2, 2\omega_1 - \omega_2' 2\omega_2 - \omega_1$ осуществляется только одночастотный резонанс, в то время как при преобразовании в $\omega_1 + 2\omega_2$ и $2\omega_1 + \omega_2$ имеется двухчастотный резонанс. Это обстоятельство приводит к тому, что благодаря фактору $(\omega_1/\epsilon)^2$ мощности $W_{\omega_1+2\omega_2}$ и $W_{2\omega_1+\omega_2}$ примерно в 10^6 раз больше мощности волн с $3\omega_1, 3\omega_2, 2\omega_1 - \omega_2$ и $2\omega_2 - \omega_1$. Кроме того, следует отметить, что, например, поляризуемость на третьей гармонике содержит множитель $\left|\frac{|d_{12}|^2}{\epsilon_1} + \frac{|d_{13}|^2}{\epsilon_2}\right|$, так что вблизи точки компенсации (1), где

достигается фазовый синхронизм частоты и третьей гармоники, поляризуемость пренебрежимо мала.

Ереванский государственный университет

Поступила 2.VI.1975

ЛИТЕРАТУРА

- 1. S. E. Harris, R. B. Miles. Appl. Phys. Lett., 19, 335 (1971).
- 2. I. F. Joung et al. Phys. Rev. Lett., 27, 1551 (1971).
- 3. R. B. Miles, S. E. Harris. IEEE, I. of QE, 9, 470 (1973).
- 4. S. E. Harris et al. VIII Intern. Quantum Electronics Conference, 1974.
- R. T. Hodgson, P. P. Sorokin, J. J. Wynne. VIII Intern. Quantum Electronic Conference, 1974.
- 6. I. A. Armstrong et al. Phys. Rev., 127, 1918 (1962).
- 7. С. А. Ахманов и др. Письма ЖЭТФ, 15, 186 (1972).
- 8. В. И. Аникин, С. В. Крючков, В. Е. Оглуздин. Квантовая электроника, 1, 1923 (1974).
- 9. А. М. Хачатрян, Н. В. Шахназарян. ЖЭТФ, 67, 54 (1974).
- 10. В. М. Арутюнян, Э. Г. Канецян, В. О. Чалтыкян. ЖЭТФ, 62, 908 (1972).

ԱԼԿԱԼԻԱԿԱՆ ՄԵՏԱՂՆԵՐԻ ԳՈԼՈՐՇԻՆԵՐՈՒՄ ՕՊՏԻԿԱԿԱՆ ԵՐԿՖՈՏՈՆԱՅԻՆ ՃԱՌԱԳԱՅԹՄԱՆ ԴԱՇՏՈՒՄ ՈՒԼՏՐԱՄԱՆՈՒՇԱԿԱԳՈՒՅՆ ՃԱՌԱԳԱՅԹՄԱՆ ԳԵՆԵՐԱՑԻԱՅԻ ՀՆԱՐԱՎՈՐՈՒԹՅԱՆ ՄԱՍԻՆ

վ. Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Հ. Գ. ԿԱՆԵ8ՅԱՆ, Ն. Վ. ՇԱՀՆԱԶԱՐՅԱՆ

Տեսականորեն հետաղոտված է ալկալիական մետաղների ատոմների դուբլետ ճեղջված ենիամակարդակով պայմանավորված բեկման ցուցիչի անոմալ դիսպերսիայի օդտադործման հնարավորությունը երկու հիմնական ալ և այ և դեներացված ալիջների ($2\omega_1 + \omega_3$, $\omega_1 + 2\omega_2$, $3\omega_1$ և այլն) միջև ֆաղային տինխրոնիզմի ապահովման համար։ Այդ հաճախու-

Բյունների վրա ստացված են ՀղորուԲյան արտահայտուԲյունները։ Ցույց է տրված, որ ֆաղային համաձայնուԲյան և որոշակի պայմանների դեպքում հնարավոր է ստանալ ձևափոխման բարձր գործակից։

ON THE POSSIBILITY OF ULTRAVIOLET GENERATION BY TWO-PHOTON OPTICAL PUMPING IN ALKALI METAL VAPOURS

V. M. ARUTYUNYAN, E. G. KANETSYAN, N. V. SHAKHNAZARYAN

The possibility of the utilization of an anomalous dispersion between two doublet splitted sublevels of alkali metal atoms to provide the phase matching of two pumping waves having ω_1 , ω_2 frequencies with the generated waves $(2\omega_1 + \omega_2, 2\omega_2 +$ $+\omega_1, 3\omega_1$ etc) is theoretically investigated. The expressions for the power of waves at these frequencies are obtained. It is shown that at the phase matching a high efficiency of conversion can be achieved under certain conditions.

СОДЕРЖАНИЕ

С. Х. Арутюнян, Э. Д. Газязян. Излучение через движущуюся диэлектрическую	
пластину	157
К. Вайсензее, Э. М. Казарян. Распад экситона на поверхностных неоднородно-	
стях тонкой (квантующей) полупроводниковой проволоки	164
9. М. Погосян, Д. Пецольд, М. А. Чалабян, Т. А. Погосян. Возможность наблю- дения ряби намагниченности в тонких ферромагнитных пленках на сфо- имакторованных электрориомикроскопических изображениях.	170
К. А. Егиян, А. А. Нагапетян, Р. Г. Арутюнян, А. Б. Какоян. Зависимость магнит-	170
ных пленок от температуры отжига	177
М. А. Солиман, Б. Л. Джидарян. Влияние внутренних напряжений на магнит-	
ные свойства пленок MnBi	184
С. А. Шабоян, М. А. Навасардян. Дефекты на поверхности монокристалла и то-	
пографические картины дислокаций	191
А. А. Дургарян, В. В. Есаян. Внутреннее трение в монокристаллах висмута	197
З. Ф. Зазян, Ю. В. Ковалев, А. А. Ханонкин. Оптический метод исследования	
деформационного рельефа ионных кристаллов	204
И. А. Саркисян. Электрофизические свойства диодов, изготовленных на основе	
компенсированного кобальтом кремния	208
Ю. А. Абрамян, Р. Г. Симонян, В. А. Арутюнов. Влияние давления на вольт-	
амперную характеристику контакта металл-полупроводник	214
Л. Т. Кантарджян, А. И. Оганисян. О перевосе энергии возбуждения в жидких ионных растворах уранина.	219
Р. С. Погосян, В. И. Громов, А. Г. Бояджян, Г. Т. Ованесов, В. Г. Баранов, Ю. К. Кабалян. Структура сшитого полиэтилена, закристаллизованного	
при наличии молекулярной ориентации	224

краткие сообщения

€.	. Дарбинян, К. А. Испирян. Обратное тормозное излучение и образование	
÷ .	пар при высских энергиях	230
₿.	. Арутюнян, Э. Г. Канецян, Н. В. Шахназарян. О возможности генерации ультрафиолетового излучения в парах щелочных металлов при двухфотон-	
	ной оптической накачке	234

Ք. Հաrnipinilijuli, է. Դ. Գազազյան. Ճառադայβումը շարժվող դիկնկարիկ շերտի	
"hgnd	157
Վայսենգեե, է. Մ. Ղազաբյան. Էբսիտոնի տրոճումը բարակ (բվանտացնող) լարի	
մակերևույթային անհամասեռությունների վրա	164
Մ. Պողոսյան, Դ. Պէցոլդ, Մ. Ա. Չալաբյան, Թ. Ա. Պողոսյան. Բարակ ֆերոմագնի-	
սական թաղանքների մադնիսական ծփանքի դիտման հնարավորությունը ֆոկու-	
սացված էլեկտրոնամանրադիտակային պատկերների վրա	170
Ա. Եղյան, Ա. Ա. Նահապետյան, Ռ. Հ. Հաrությունյան, Ա. Բ. Կակոյան. Գլանային	4
մաղնիսական թաղանթների մաղնիսական ճատկությունների կախումը ջերմամշակ-	
ման ջերմաստիճանից	177
U. Unihilus, J. U. Shaurjus. bhophi jupniditant ugabanifinin MnBi fugutif-	
ների մադնիսական ճատկունյունների վրա	184
2. Tupnjut, U. U. Umdunumnjut. Upupininkah Suhhaniffuihi upumbhah ugab-	
ցունյունը դիսլոկացիաների տոպոսրաֆիկ պատկերների վրա	191
2. Introgering, J. J. buming. black odenda Bi dahapininghashand	197
3. Ququat, 3ni. 4. Andmind, U. U. butathift. Patunth prainbathach abhandu-	S IL.
ցիոն ռելեֆի ուսումնասիրումը օպտիկական հղանակով	204
U. Umraujud. Unpujund undubliumgdud uhihghnidha ummanundud ahaabbah	
էլեկտրաֆերիկական ճատկությունները	208
. U. Uprudius, f. 2. Uhindius, 4. U. Zurnipiniand, Stadul wondanifinia di-	
ապո-հիսանարորդիչ հրապետի վուտ-ավանությեն ընդւնեարծի վրա	214
8. Ղանրաբշյան, Ա. Ի. Հովճաննիսյան, Ուղանինի հեղուն հոնական լուծույնների	
	219
U. Jonnaume, 4 h Semini, 11. 2. Primeine, S. C. Odushund, 4. S. Burulad.	
Bry & Umpmynd, knowlast waiht Black hand and an ana handwad a faib-	
hanne amandanlash fint mahan fint mulatikani	224
վուլիսի փառավոկվացությաս ասփակության պայստոսրիուն ։	
	 4. Հառությունյան, Է. Գ. Գազազյան. Ճառագայխումը չարժվող դիկլնկարիկ չնրակ միջով Վայսննգնն, Է. Մ. Ղազառյան. Էրսիտոնի տրո<ումը բարակ (բվանտացնող) լարի մակերևույթային անհամասևոռնթյունների վրա Մ. Պողոսյան, Գ. Պէցոլդ, Մ. Ա. Չալաբյան, Բ. Ա. Պողոսյան. Բարակ ֆերոմագնի- ապան Բաղանքների մագնիսական ծփանքի դիտման հնարավորությունը ֆոկու- սացված Լլեկարոնամանրադիտակային պատկերների վրա Ա. Եղյան, Ա. Ա. Նահապետյան, Ռ. Հ. Հառությունյան, Ա. Բ. Կակոյան. Գլանային մագնիսական բաղանքների մագնիսական ծանգի ազդեցություն, է Բ. Կակոյան, Գլանային մագնիսական բաղանքների մագնիսական հատկությունյան, Ա. Բ. Կակոյան, Գլանային մագնիսական բաղանքների մագնիսական հատկությունների կրա Ա. Սոլիման, Վ. Ա. Հարայան. Ներթին լարումների ազդեցությունը MnBi քաղանք- ների մագնիսական հատկությունների վրա Հ. Շաթոյան, Մ. Ա. Նավասաոդյան. Միաբյուրեցի մակերևույթային արատների ազգե- ցության, Մ. Ա. Նավասաության. Միաբյուրերի մակերևույթային արատների ազգե- ցության, Մ. Ա. Նավասաության. Միաբյուրերի մակերևույթային է ու հաղասաներ ազգե- ցության, Յու. Վ. Նավալով, Ա. Ա. Խանոնկին. Իոնային բյութեղներում . Ղազյան, Յու. Վ. Կովալյով, Ա. Ա. Խանոնկին. Ինային բյութեղների դեֆորմա- ջիոն ոելեֆի ուսումնասիրումը օպտիկական եղանակով . Սաոգսյան. Կորալտով կոմպենսացված սիլիցիումից պատրաստված դիողների էլնկտրաֆիրիկական հատկությունները . Ա. Արսամյան, Ռ. Հ. Սիմոնյան, Վ. Ա. Հառությունով. Ճնչման ազգեցությունույթների էլնկտրաջիրիկական հատկությունները . Ա. Արսամյան, Ա. Ի. Հովճաննիսյան. Ուրանինի հեղուկ իոնական լուծույթների դողոնան էներգիայի փոխանցման մասին . Պողոսյան, Վ. Ի. Գոոմով, Ա. Հ. Բոյաջյան, Գ. Թ. Օվանեսով, Վ. Գ. Բասանով, ծու Կ. Կաբալյան. Կապված պոյիքինենի կառուցվածըը բյութեսացված մոլե- կուլյար դասավորվածության ասկայության պայմաններում

ՀԱՄԱՌՈՏ ՀԱՂՈՐԴՈՒՄՆԵՐ

U.	v .	Դաբբինյան, Կ. Ա. Իսպիբյան. Հակադարձ արգելակման ճառագայթումը և ղույգերի	
		առաջացումը մեծ էներգիաների դեպրում	230
ષ.	Մ.	. Հարությունյան, Հ. Գ. Կանեցյան, Ն. Վ. Շահնազարյան. Ալկալիական մետաղ-	1
		ների գոլորշիներում օպտիկական երկֆոտոնային ճառագայթնան գաշտում ուլտրա-	
		մանուշակագույն ճառագայիման գեներացիայի հնարավորուիյան մասին	234

....