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ON SOME PROPERTIES OF SOLUTIONS OF A THREE-
DIMENTIONAL LINEAR HOMOGENEOUS SYSTEM OF
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The paper considers the some properties of solutions of a three-
dimentional linear homogeneous system of differential equations with a
postive and continuous on the whole numerical line coefficients.
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The following three-dimensional linear homogeneous system of ordinary
differential equations with continuous coefficients on the whole numerical line is
considered (see, for example, [1])
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where
y1(8)
A(t) = {a;(O} a;;(®) =0, i,j=123, y=y@) =|y(t) |
y3(t)
If we uing the transform ([2])
t
yi(t)=z(t) eXp[J. G (T)d'f] , (2
f
then system (1) is transformed into an equivalent system
z = B(t)z, €)
in which the coefficients of the matrix B(t) are determined by the relations:
t
b; (t) = &; (t) eXp[I(ajj (T)_aii(T))dev 4)
t

and, in particular, the diagonal elements of the matrix B(t) will be equal to zero. On
the other hand, it follows from formulas (4) that as a result of this transformation, the
signs of the coefficients of the matrix A(t) will remain in the matrix B(t) Note also

that if a component z (t) of a solution z(t) of system (3) takes on only positive
values, then an increase in this component will result in an increase in its
corresponding component Y;(t). The latter will follow from relations (2) with

y,(t) >0 and z(t) >0, since in this case we will have

t I t t
7,(t)= [y. (v exp[— [a (r)dr]] = y,(t) exp[— [a (r)dr]— Y, (t)a (1) exp[— a0 ] >0,
f t ty
t
whence, dividing the inequality by the expression exp[—j a; (1) rJ , We obtain
()
that

y; (t) > y; (t)a; (v) > 0.

From the above considerations, it follows that when considering the monotonicity of
the components of the solutions of system (1) in the case under consideration,
without losing generality of reasoning, we can restrict ourselves to the case when the
diagonal elements of the matrix A(t) are zero. Thus, in future discussions, we will
assume that the coefficients a, (t)=0, 1=1,2,3.

Theorem 1. The components of every solution of system (1) with positive initial
values are everywhere increasing functions.

Proof. Suppose now that y(t) is a solution of the system (1) that satisfies the
conditions

y1(to) > 0,y,(to) >0, y3(tp) >0.

We write the system (1) in the expanded form, namely
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y1 = a2y + a13(O)ys,

Y2 = az1()y1 + a3 (D)ys, )

y3 = az1(D)y1 + azz(0)ys.
From system (5), due to our assumptions, it follows that all the components of the
solution y(t) at the point t, are increase. Without losing common reasoning, we
now assume that one of the components of the solution of the system (5), for
example, y; (t)), does not preserve the nature of monotonicity. To do this, we assume
that y;(t) >0 for t € [ty,t;)) and y;(t) <0 for t € (t;,t,), and therefore,
y1(t;) = 0 due to the continuity of y, (t). Then from the first equation of system (2)
we will have

a;,(t1)y2(t1) + ag3(t)ys(t) =0,
where do we find that

y2(t)ys(t) < 0.

y2(t1) > 0,y3(t;) <O. (6)
Then, since, according to our assumptions, y;(t,) > 0 and y(t) is continuous on
the whole number axis, there is t; € (t,,t;) So that

y3(t3) =0

Suppose now

and for t € (ts,t4]
y3(t) < 0.
But then from the 3rd equation of system (5) we will have
az1(O)y1(t) + azz (D)y2(t) <0
or
a2 (1) y2 (1) < —az (O)y1 (D),
whence it will follow that for t € (t3,t;] y,(t) < 0, and, in particular,
y2(t1) <0,
which contradicts conditions (6). We have come to a contradiction, which proves the
theorem.
The assertion of Theorem 1 directly implies.
Corollary. The components of any solution of system (2) with positive initial

values at the point t, take on the interval [t;, +o0) only positive values.
Theorem 2. For every solution y(t) of the system (1)
t

1
Iyl < Cexp | 5 [Mallar ) @
to
where C = ||ylll¢=¢,
Proof. Suppose again y(t) is the solution of system (5). Multiplying the first
equation of the system by y;, the second by y,, the third by y,, and then adding the
results, we arrive at the following equation

Oi+yi+y3) = %[(au(f) + a1 (£)y1y2 + (a13(t) + az1(t))y1y3 + (ax3(t) +

az,(t)y2ysl. (8)
Next, in view of the obvious inequality

1
Xy <3 (x2(0) + ¥2(D)), 9
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we will have
|2 +y3 +¥3)|

= %|(a12 () + az1(©)y1y2 + (a13(8) + az1 (£)y1y3 + (az3(t)
) + az(0)y2y3)| <
< 7 |a12(t) + az (O|f +y5) + las(t) + az (O|(f + ¥5) + azz(6)
. +az, (0|05 +y3)| <
Z|a12(t) +ay (OIOF +y7 +y3) + lagz(®) + az: OOF +y5 +y3) +

+lays () + az, (OIE + y5 + y3)

1

3
<3 2. (ay©1+lap@ONOF +53 +5D) (10)
i,j=1

i<j
We introduce the notation

u(t) = y7 () + y; (@) + y3 (1),
then inequality (10) is written as

3
, 1
@l <7 ) (lag®] +1a; ) u(®).
i,j=1
e
Given the fact that
lyll> = y£(©) + y3(t) + y3(t), anu ||A|| = Z§j=1(|aij(t)| + |aji(t)|); (11)

i<j
will have
AN 1 2
Iy lI*) SZIIAIIIIyII ,
or
ey 1
ylz T4

Integrating this inequality in the range from t, to t, we find that

Iyl < cesp| 5 [laler )
t

where C = ||yll[¢=¢, - The theorem is proveod.

Corollary. For any solution y(t) of the system (1) with positive initial values at
the point ¢, [|yll is an increasing function on the interval [t,, +o0).

The proof follows from relations (8), (11) and from Theorem1.

Theorem 3. The product of the components of every solution y(t) of system (1)
with positive initial values at a point t, is an increasing function on the interval

[t,, +0o0) and tends to infinity when t — co.

Proof. Suppose y(t) is a solution of system (1) with initial conditions
y1(to) > 0,y,(ts) >0, y3(tg) > 0.
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Then, according to the corollary of Theorem 1, the components of the solution in
question will be positive on the whole numerical line. Multiplying the first equation
of the system by y, v, the second equation by y, ys, the third equation by y,y,, and
then adding the resulting equation, we will have
1Y2y3) = (a12() + az1 (O))ys F + ¥3) + (a13(t) + az1()y (vf +y3) +
+(azs(t) + az, ()y1 (3 + ¥5)).

Using the inequality (9) again, and also taking into account the positiveness of the
components of the solution, we obtain

(V1Y2y3) = 2( a12(t)az1 () Y123+ a13(t)az1 () y1Y2y3
+ a12(t)a21(t)3’1}’23’3) =
3
=2 Z a1, (t)az; (t) y152Y3- (12)
{7=1
li]<j
If we difine v(t) by

v(t) = y1(0)y2(Oys (D),

then inequality (12) is written as

3
v'>2 Z Vaz(t)az, (t) v,

=1
i<j
integrating that in the range from ¢t to t, we get the inequality
v(t) = Ce®®, (13)
in which ¢ > 0, and
t 3
a(t) =2 f Z a12(t)ay, () dr.
to i,j=1
i<j

Since the integrand in this relation is positive, the function a(t) is increasing, and
therefore, as t - o we have a(t) - . In this case, from inequality (13) (or from
(12)) it will follow that v(t) is also an increasing function and v(t) >«  as
t — oo, as required to be proved.
Below, in Figures 1-3, graphical interpretations of assertions of proved theorems
and corollaris are given on the example of one particular solution of the system
(y1 = 0.02ty, + 0.03t%ys,

, 0.04

¥4 = 0.01(1 + )y + =3y,
with the initial conditions: y;(1) = 2, y,(1) =35,y3(1) =16 (t;, = 1), inthe
segment [1, 5], built in the Mathcad environment (in the figures y0 corresponds to
the component y,, y1 - to the component y,, and y2 to the component y;).
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Fig. 1. The graphs of the components y(t)
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Fig. 2. The graph of the v(t) - product of the components y(t)
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Fig. 3. The graph of the ||y||
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