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The Bekenstein-Hawking entropy is a cornerstone of horizon thermodynamics but quantum
effects correct it, while inequivalent entropies arise also in non-extensive thermodynamics. Reviewing
our previous work, we advocate for a new entropy construct that comprises recent and older
proposals and satisfies four minimal key properties. The new proposal is then applied to black holes
and to holographic dark energy and shown to have the potential to cause early universe inflation
or to alleviate the current Hubble tension. We then analyze black hole temperatures and masses
consistent with alternative entropies.
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1. Introduction. Einstein said of thermodynamics that "A theory is the more

impressive the greater the simplicity of its premises is, the more different kinds

of things it relates, and the more extended is its area of applicability. Therefore

the deep impression which classical thermodynamics made upon me. It is the only

physical theory of universal content concerning which I am convinced that within

the framework of the applicability of its basic concepts, it will never be overthrown"

[1]. Indeed, thermodynamics is applied to a large variety of physical theories and

situations, but its application to systems with long range interactions (where the

partition function commonly diverges), and to gravity in particular, constitutes a

challenge. A major discovery in the 1970s was the formulation of black hole

thermodynamics [2,3]. It started with the discovery of the Bekenstein-Hawking

entropy of black holes [4] GA 4S , where A is the area of the event horizon

and we use geometrized units in which the speed of light c, the reduced Planck

constant  , and the Boltzmann constant K
B
 are unity. The pieces of the puzzle

fell into place when Hawking discovered that the Schwarzschild black hole radiates

scalar quanta at the Hawking temperature

, 
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where M is the black hole mass [5]. While, in classical thermodynamics, entropy

is universal and defined uniquely, quantum effects correct the Bekenstein-Hawking

entropy pointing to its modification in full quantum gravity, while inequivalent
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entropies arise also in non-extensive thermodynamics. New entropy proposals

come from classical gravity as well. Here we summarize recent work and ideas

on the application of alternative entropies to cosmology and black holes [6,7].

New entropy proposals in the literature include non-extensive entropies that

reduce to S  in some limit, such as the Tsallis entropy ([8], see also [9,10]) for

systems with long range interactions
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where A
0
 is a constant area and the dimensionless parameter   quantifies non-

extensivity. Other proposals are the Rényi entropy [11-13]

 SS 


 1ln
1

R (3)

related to information theory, the Sharma-Mittal entropy [14]

  11
1

 R
TSM

R
SS (4)

(with R and   free parameters), the Barrow entropy [15]

21

1P
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A

A
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proposed as a toy model for quantum spacetime foam (where A
Pl
 is the Planck

area), the Kaniadakis entropy [16]

 SS K
K

K sinh
1

 (6)

generalizing the Boltzmann-Gibbs entropy in relativistic statistical systems [16],

and the non-extensive Loop Quantum Gravity proposal [12,17]

    , 1
1

1
01 


  SS q

q e
q (7)

where the entropic index q quantifies how the probability of frequent events is

enhanced relatively to infrequent ones,   00 3ln2  , and 0  is the Barbero-

Immirzi parameter, usually taking one of the two values 3ln2   or 22ln3  ,

depending on the gauge group used.

These new entropies share four properties, which we promote to minimal

requirements for any alternative entropy proposal:

1. Generalized third law: The entropy vanishes when the Bekenstein-Hawking

entropy S  does. While, in the standard thermodynamics of closed systems in

equilibrium, Se  expresses the number of states and the entropy S vanishes at zero

temperature because the ground (vacuum) state should be unique, the Bekenstein-
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Hawking entropy diverges when 0HT  and vanishes as HT . We require

generalized entropies to vanish when the Bekenstein-Hawking entropy S  does.

2. Monotonicity: The entropy is a monotonically increasing function of the

Bekenstein-Hawking entropy S .

3. Positivity: The entropy is positive, as the number of states Se  is greater

than unity.

4. Bekenstein-Hawking limit: The entropy reduces to the Bekenstein-Hawking

prescription S  in an appropriate limit.

A new and very general entropy with the above properties and incorporating

all the above-mentioned entropy proposals as special limits is [6]
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where we assume all the parameters (    , , ) to be non-negative. This proposal

reproduces (2)-(7) for appropriate parameter values [6].

A simpler alternative proposal is the 3-parameter entropy [6]
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where (   , , ) are non-negative. This quantity reduces to the Sharma-Mittal

entropy (4) with SS T  (or 1 ) when  . If   , the limit 

yields
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and the choices   and 21   reproduce the Tsallis and Barrow entropies

(2) and (5), respectively. The limit 0 , 0  with   finite gives instead

the Rényi entropy (3) (where   is replaced by   and  ). Finally, 

and   gives the new quantity       1 , , SS eG  satisfying our four

entropy requirements.

2. Black holes and the holographic Universe. Let us apply the

generalized entropy to the Schwarzschild geometry

 , sin
21
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GM
ds (11)

where M is the black hole mass. One can attempt to identify the Tsallis or the

Rényi entropies (2) or (3) with the black hole entropy [18]; then, if we assume

that the mass M coincides with the thermodynamical energy E [12,13],

GG TdEd S  requires the temperature T
G
 to be defined by
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Alternatively, assuming the Hawking temperature (1) as the thermodynamic

temperature, the first law
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The search for new entropies must deal with this problem, which requires a deeper

reexamination of the broader thermodynamical formalism [6]. Black hole ther-

modynamics is expected to change drastically when quantum gravity becomes

important. Eventually, the latter should change classical and black hole thermo-

dynamics, not only redefining entropy but also correcting well-established quan-

tities such as temperature and energy.

Thermodynamics has been applied fruitfully to another area of gravitational

physics, that is, cosmology, to which we now turn our attention. In the

holographic dark energy (HDE) scenario [19], thermodynamics plays a primary

role since it is applied successfully to explain dark energy with the entropy of

the cosmological horizon. In this context, the density of the HDE is proportional

to the square of the inverse holographic cutoff L
IR
, 2223 IRhol LC  , where C

is a free parameter. This holographic cutoff L
IR
 is usually taken to be the size

of the particle horizon L
p
 or of the future horizon L

f
, but there is no compelling

argument for choosing this quantity. Following [19], the cutoff is assumed to

depend on L
IR
 ( aLLLLL ffppp  ..., , , ..., , , ,  ), which gives the "generalized HDE"

[19]. In the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe

described by the line element

  222222 dzdydxtadtds  (15)

in comoving coordinates, one speculates that the generalized HDE originates from

the entropy of the cosmological horizon. The physical radii of the particle and

event horizons of the FLRW universe (27) are     
t

p tatdtaL
0

 and

   



tf tatdtaL  (when these integrals converge). Differentiating gives
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 ,, 
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where aaH  , an overdot denoting differentiation with respect to t. In the

thermodynamical approach to gravity (e.g., [20]), the Einstein-Friedmann equa-



567NEW  ENTROPIES,  BH,  AND HOLOGRAPHIC  DARK  ENERGY

tions are derived from the Bekenstein-Hawking entropy S : the apparent horizon

of the universe (27) has radius 1 HrH , area 24  HA , and Bekenstein-

Hawking entropy GH 2S . We have

 dtP
H

dt
H

dtrdEdQ H 
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using covariant conservation   03  PH ; from the Gibbons-Hawking tem-

perature  2HT  and the first law of thermodynamics TdS = dQ, it follows that

 PGH  4  and integration gives the Friedmann equation

, 
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where the cosmological constant   appears as an integration constant. If the

Bekenstein-Hawking entropy S  is replaced by a different (non-extensive) concept

of entropy, the Friedmann equation (18) is modified, which is attributed to the

HDE. For example, the Tsallis entropy (2) yields the modified Friedmann

equation

 
 

. 
28

3
, 

33

8
22

1

2
1

22








































H

H
HH

G

G
H TT (19)

Interpreting 2 ,
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TIRT LC   as the HDE due to the infrared holographic cutoff
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The Barrow entropy (5) describing the spacetime quantum foam phenomenologi-

cally gives
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while, with the new three-parameter entropy proposal (74), one obtains
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where  zcbaF  ; , ,12  is the hypergeometric function.

The formal conservation law   03  GGG PH  defines the pressure P
G
 of

the HDE and its equation of state parameter
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When matter can be neglected and 0 , the Friedmann equation   GGH  382

and Eq. (22) yield 012 F . The zeros iZ  of this hypergeometric function are

de Sitter universes with Hubble functions given by  2HGZi  and effective

cosmological constants  GZieff 3 . If eff  is large, it can cause early

universe inflation; if it is very small, it may describe the present accelerated

expansion; if it is slightly larger than the present dark energy, it could potentially

solve the Hubble tension problem [21,22].

Consider the case of a small Z
1
: the hypergeometric function is approximated

as
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then      2132
1

~HGZ  and       G~H 2132 .

If  nΟ~ 2103  ,   mΟ~ 210 , it is  2282 eV10  mn~H  and n + m = 61 gives

the current dark energy scale 3310~H eV. If another zero 2Z  exists with 2Z

slightly smaller than 1Z , the effective cosmological constant can potentially solve,

or alleviate, the Hubble tension problem [21,22].

In general, the hypergeometric function can have several or infinitely many

zeros. If there are a root of order unity or a large and negative root iZ , then

one can obtain the large Hubble rate corresponding to the inflationary epoch.

Retaining, for illustration, the first three terms in Eq. (24),
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For n + m = 61 one finds again the present Hubble scale. If, instead,  ZHG 2 ,

then  2282 eV10  mn~H  and, for n + m = 61, it is  28922 eV10  m~H . At the

GUT scale ~1016
 GeV = 1025

 eV and inflation with H ~ 1022
 eV, we obtain m ~ 33

or 34, so Z  may explain early universe inflation.

One can also study generalized HDE from the full six-parameter entropy (72)

instead of using the simpler proposal (73), as we did here. Correspondingly, there

are many more possibilities to realize realistic cosmic histories.

3. Alternative entropies and corresponding energies. We describe

spherical, static, and asymptotically flat spacetimes with the geometry
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0
 an integration constant. The metric inside a matter ball must be regular

at r = 0, hence
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as 0r  or else there is a conical singularity. Then, m
0

 = 0 and
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For asymptotically Schwarzschild geometries
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 mrdrrrmM (35)
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The total mass is not  rm  but [7]

     

        , 
3

14

2
14

0

3

2

22
2

21

0

23






























GΟ
r

rmG

r

rGm
rrdr

dr
r

rGm
rrrxdM

(36)

where   is the determinant of the 3D Riemannian metric

  . 2
2

222   drdredxdx m
m


 (37)

The gravitational binding energy of the ball is MMEB  . The second term in

the last line of Eq. (36) is interpreted as the Newtonian gravitational potential

energy

       
, 

2
4

0

2
  







r-r

rr
VddV

G

r

rm
rrdrG (38)

where the general-relativistic corrections are of order 2G  and higher.

If a black hole geometry is asymptotically Schwarzschild we can impose

  Mrm  , fixing the integration constant m
0
 (one obtains m

0
 = M for the

Schwarzschild black hole, for which   can be seen as proportional to a Dirac

delta centered at r = 0). The mass M coincides with the Arnowitt-Deser-Misner

mass.

Let us consider now modified gravity, in which case we write the t - t field

equation as

  . 
1 2

2

2   rre
r

eff (39)

Now the effective energy density eff  is defined by casting the field equations as

effective Einstein equations with right-hand sides that contain effective stress-

energy tensors built with the non-Einsteinian terms. Now the effective mass is

   . 4
0

2
 
r

effeff rrrdrm (40)

For example, for F(R) gravity

     
 


 matter

RF SRFgxdS 4

22

1
(41)

(where S is the action, R is the Ricci scalar, F(R) is a nonlinear function, and

g is the determinant of the metric g ), we write    RfRRF   and

    dRRdfRfR  . The (0, 0) field equation defines the total energy density

 RFeff  , where
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   

. 
2

2

2

1

2

2

2
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



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
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
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








 
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






RR

RRF

f
r

fe

f
r

e
f

(42)

The resulting (effective) total mass

    . 33
  RFeffeff xdrxdM (43)

receives contributions from both matter and gravity. The leading correction to the

binding energy is

           
, ..., 




   rr

rrrr RFRF
effB VddVGE (44)

  rmM effeff  is the total mass-energy of the system, while  rmeff  is the

mass-energy of a 2-sphere of radius r.

A black hole in alternative theories of gravity may have horizon radius

  rmGMr effeffh 22 . Now, if effM  is used as the internal energy and

44 2
hrS  as the black hole entropy, the new temperature given by

effdM

d

T

S


1
(45)

differs from the usual Hawking temperature T
H
. Alternatively, if the Hawking

temperature is used, the entropy

H

eff

T

dM
d S (46)

must replace the Bekenstein-Hawking entropy. The difference  heffeff rmM   could

then be identified with the energy outside the horizon. For this black hole,

 heff rm  would be the internal energy and Eq. (46) would become

 
. 

H

heff
bh

T

rdm
d S (47)

4. Temperatures corresponding to alternative entropies. Denote the

metric coefficients as

       ,, 2
1

2 rr erherh   (48)

then the roots of h(r) = 0 locate the event horizon. If h
1
(r) does not vanish

simultaneously with h(r), the spacetime curvature diverges as   0rh . If h
1
(r) and

h(r) do vanish simultaneously, the surface h
1
(r) = h(r) = 0 is an event horizon. In

fact, consider the curvature invariants
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   

       , 12882
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  

   

      , 1414344424
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224
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(50)

   
. 

2

1442
22

11
2

11
2

1
22

1

rh

hrhhhhrhhrhhrrhh
R


 (51)

Their denominators contain positive powers of h and these invariants diverge as

0h . If h
1
(r) and h(r) vanish simultaneously, the invariants (49) remain finite

where h
1
(r) = h(r) = 0 since h

1
(r) = h

2
(r)h(r) and 02 h  and is regular where

h(r) = 0. Then the substitution of h
1

 = h
2
h in Eq. (49) yields

   
, 
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2
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222
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2
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(52)
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222
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r
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r
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r
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RR
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
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







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






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











(53)

and

  
, 

12

2

2
2

2
22122

2
r

hhhhrhhh

r

hrh
hhR








 (54)

and these invariants remain finite as   0rh .

Given that h
1
(r) and h(r) vanish simultaneously on the event horizon, we can

write    rerh  2
1  and the radius of the event horizon is

   . 2
4

2

h
h

h rGm
rm

r 



 (55)

Close to the horizon, i.e., at rrr h  ,

  
, 21

2

h

hh

r

rrrC
hhhe




(56)
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  
 

, 
22

12

hh

hh

rrh

rrrC

h

h
he




(57)

where    hh rmrC 1 . Wick-rotating the time  it , the near-horizon geom-

etry (27) becomes

 
   

    . 2
2

222

2

2 





 drrd
rrC

r
d

rrh

rrC~ds h
h

h

hh

h
(58)

Introduce the new radial coordinate defined by     rrCrrdd hh   and

 
 

, 
4

, 2
2

h

h

h

h

r

rC
r

rC

rr 



 (59)

then the near-horizon geometry (58) reads

 
    

4

2
2

2222

2
2

2
2  drdd

rrh

rC~ds h

hh

h
(60)

To avoid conical singularities near 0 , one imposes that the Euclidean time

+ is periodic of period t
*
,

 
 

 
 

. 2
22 22







hh

h

hh

h

rhr

rC~
rhr

rC
(61)

As a result, the temperature corresponds to 1
t . In the Euclidean path integral

formulation of finite-temperature field theory

       THHtL
eedteD

t
 

 


 TrTr0 (62)

and the temperature of the Schwarzschild black hole

 
 

 
   

 
 h

Hh

hheff

h

hh

h

rh

TrC

rhrGm

rC

rhr

rC
T

222 84






 (63)

follows which, in general, differs from the Hawking temperature

 heff
H

rGm
T




8

1
(64)

by the factor    hh rhrC 2  that cannot be absorbed into a time rescaling because

we have fixed the scale so that

        . 12
12   rerhrhrh (65)

Since Hawking radiation is a near-horizon phenomenon, thermal radiation can

correspond to the temperature (63).

Identifying m
eff
 (r

h
) with the black hole internal energy, Eq. (47) yields

 
.  T

rdm heff
bhS (66)
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The solutions of the gravitational field equations contain integration constants c
i

for i = 1, ..., N (for example, in general relativity (GR) the mass M of the

Schwarzschild black hole appears as an integration constant in the metric coef-

ficients rMee 2122    when integrating the Einstein equations for spherical

and asympotically flat vacuum). N depends on the theory and  r ,  r , m(r),

h(r), and h
1,2

(r) depend on the integration constants c
i
. The solution r

h
 (c

i
) of

Eq. (55) also depends on these integration constants (again, for the Schwarzschild

black hole of GR, r
h

 = 2M). Eq. (55) yields

      
, 

2
 ;

G

cr
ccrrmrm ih
iihh  (67)

then the integration constants c
i
's can be parametrized with a single parameter  ,

  ii cc  (for example, the Reissner-Nordström black hole can be parametrized

by the charge-to-mass ratio).

In this way, Eq. (63) turns Eq. (66) into

         
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


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i

iihih
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c

c
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r
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d

G

ih

1

2

 ;
1

 ; 4

2

1
S (68)

and choosing hr , Eq. (68) becomes

   
  

, 
 ;

1

 ; 4

2

1
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2








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hr

r

i

i
bh

r

crm

crh
d

G
S

(69)

where the integration constant is determined by the condition   00  hbh rS .

In GR, the Schwarzschild black hole with h
2
(x) = 1, m = M = const is characterized

by the Bekenstein-Hawking entropy. The different choice in which  hrrh 2

gives a contribution leads to an entropy bhS  potentially different from the

Bekenstein-Hawking one.

According to Eq. (69),

  

  
  22

2
2 16

 ;
1

 ; 
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r
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h
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



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
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
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(70)

and various entropy choices lead to corresponding forms of

  

  
. 

 ;
1

 ; 
2

2


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






 hrr

hi

hih

r

rcrm

rcrrh

(71)



575NEW  ENTROPIES,  BH,  AND HOLOGRAPHIC  DARK  ENERGY

In [6], we proposed two generalizations of entropy. We begin with the six-

parameter entropy

  , 11
1

 , ,





































































 SSSG (72)

where we take all the parameters (    , , ) to be positive. Adjusting these

parameters to suitable values, this entropy function reduces to the entropies

(2)-(7). If we choose 0   and   , the values   or 21 

give back the Tsallis entropy (2) and the Barrow entropy (5). If we pick 0

and we write R ,  R , and  , then we recover the Sharma-Mittal

entropy (4). Another possibility consists of the limit 0  and 0  with

   finite. Further setting 1 , this procedure recovers the Rényi

entropy (3). In the different limit 0  of the entropy (72) with 1  and

K  the latter is reduced to the Kaniadakis entropy (6). Finally, if we fix

  and   to the values 0  and 1  in Eq. (72), the limit   in

conjunction with q 1  reproduces the Loop Quantum Gravity entropy (7) with

   10  .

Another proposal in [6], containing only three parameters, consists of

  . 11 , , 1
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
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
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




 SSG (73)

We choose again positive values of the parameters  ,  , and  . When  ,

GS  is the same as the Sharma-Mittal entropy (4) with SS T  and 1 . If we

fix   , then (73) becomes the Tsallis entropy proposal (2) if   and

the Barrow entropy (5) if   . To conclude, the limit    0 ,0 ,   with

  finite yields the Rényi entropy (3), provided that we substitute   in place

of   and that  .

Let us come to discuss spherical spacetimes while using the Tsallis entropy

(2). Equation (70) then becomes
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In the same geometry, the Rényi entropy construct (3) yields instead
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By contrast, the Kaniadakis entropy (6) yields
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, cosh
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while our six-parameter entropy (72) produces
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We can also consider our simplified three-parameter entropy (73), which gives
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Specific models realizing these relations have been discussed in [7].

5. Conclusions. The Bekenstein-Hawking entropy is modified by quantum

gravity phenomenology, as exemplified by the Barrow and the Loop Quantum

Gravity proposals (5) and (7), or by non-extensive thermodynamics. While specific

modifications abound in the literature and may be questionable, the general idea

of departures from the simpler Bekenstein-Hawking prescription in the presence

of phenomena such as spacetime foam, loops, or the unusual weighting of

frequent/infrequent states, appears reasonable. Lacking knowledge of the "correct"

entropy, we propose a phenomenological prescription which incorporates many

recent and older entropies proposed in the literature and embodies four key

properties that we identify as essential requirements for any physically reasonable

entropy. Our most general construct contains six parameters, but a simplified

version limited to three parameters seems to achieve the same goals, as shown

in [6,7,18] and summarized here.

In addition to containing the previous Barrow, Loop Quantum Gravity, Rényi,

Tsallis, Sharma-Mittal, and Kaniadakis entropies as special cases, and to reducing

to the Bekenstein-Hawking entropy in an appropriate limit, our new proposal

exhibits interesting phenomenology when applied to holographic dark energy in

cosmology. In this context, there is the possibility of generating an effective
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cosmological constant, which can either cause early universe inflation or alleviate

the current Hubble tension afflicting the standard CDM  cosmological model

[21,22]. Even though tiny, Planck-scale suppressed, infrared corrections to low-

energy physics could at first sight seem unable to generate observable cosmological

effects, this may not be the case. While the details of possible quantum gravity

corrections remain obscure, one can follow Einstein's insight on the wide appli-

cability of thermodynamics in physics and search for these corrections through

their effects on entropy and thermodynamics. The new entropy proposals outlined

here and in [6] seem to offer a practical implementation of this approach to

cosmology and gravity.

Changing the notion of entropy jeopardizes the thermodynamics, unless the

temperature and mass (i.e., internal energy) are also changed in a suitable way.

We have proposed ways of making the entire thermodynamics consistent with

alternative entropies, but we have not exhausted all possibilities. Alternatives will

be explored in the future.
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ÍÎÂÛÅ ÝÍÒÐÎÏÈÈ, ×ÅÐÍÛÅ ÄÛÐÛ È
ÃÎËÎÃÐÀÔÈ×ÅÑÊÀß ÒÅÌÍÀß ÝÍÅÐÃÈß

Ø.ÍÎÆÈÐÈ1,2, Ñ.Ä.ÎÄÈÍÖÎÂ3,4, Â.ÔÀÐÀÎÍÈ5

Ýíòðîïèÿ Áåêåíñòåéíà-Õîêèíãà ÿâëÿåòñÿ êðàåóãîëüíûì êàìíåì òåðìî-

äèíàìèêè ÷åðíûõ äûð, íî êâàíòîâûå ýôôåêòû äàþò ïîïðàâêè ê íåé. Íå

ýêâèâàëåíòíûå ýíòðîïèè ïîÿâëÿþòñÿ òàêæå â íå-ýêñòåíñèâíîé òåðìîäèíàìèêå.
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Ìû äåëàåì îáçîð ïðåäûäóùèõ ðàáîò è ïðåäëàãàåì íîâóþ ýíòðîïèþ, êîòîðàÿ

îáîáùàåò äðóãèå âàðèàíòû ýíòðîïèé è óäîâëåòâîðÿåò ÷åòûðåì êëþ÷åâûì

óñëîâèÿì. Íîâàÿ ýíòðîïèÿ ðàññìîòðåíà â òåîðèè ÷åðíûõ äûð è ãîëîãðàôè÷åñêîé

òåìíîé ýíåðãèè. Ïîêàçàíî, ÷òî îíà ìîæåò îáúÿñíèòü èíôëÿöèþ ðàííåé

Âñåëåííîé è óêàçàòü íà âîçìîæíîñòü ðåøèòü íåäàâíþþ ïðîáëåìó ñ ïàðàìåòðîì

Õàááëà. Ñäåëàí òàêæå àíàëèç òåìïåðàòóð è ìàññ ÷åðíûõ äûð ñîâìåñòèìûõ

ñ àëüòåðíàòèâíûìè ýíòðîïèÿìè.

Êëþ÷åâûå ñëîâà: ýíòðîïèÿ: ÷åðíûå äûðû: òåðìîäèíàìèêà
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