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A SYSTEM FOR TRANSFORMING IMAGES TO SYMBOLIC PRESENTATION 
FOR COMBINATORIAL DEFENSE AND COMPETITION PROBLEMS 

We aim to develop tools for regular transformation of combinatorial defense and 
competition problems’ situations to their symbolic presentation by machine learning 
solutions. As it is proven, that RGT class problems are reducible to each other, in this paper 
we demonstrate a developed ANN model to detect the chess board from an image and 
classify the chess pieces. Two models were developed – a simple one which provides high 
accuracy as some complex models worldwide, and the second approach (based on a new 
method), which correctly fits for other RGT problems with a bit lower accuracy.  

Keywords: neural networks, image classification, object detection, systemic 
classifications, algorithms. 

1. Introduction 
1.1. Background of the research 
Cognitive Algorithms and Models research directions include the ones in 

Artificial Intelligence and aim to develop constructively regularized models of 
human approaches in solving combinatorial problems. 

There are different lines of researches in this area, e.g. machine learning 
solutions, such as neural networks, that concentrate on modeling of biological 
nature of the human brain. 

Following the line of Cognitive Algorithms and Models research directions, 
we concentrate on the development and applications of cognitive functions to a 
class of combinatorial problems defined as problems where spaces of solutions are 
Reproducible Game Trees (RGT) [1-3].  

1.2. RGT class 
RGT class includes important problems like computer networks intrusion 

protection, optimal management and marketing strategy elaboration in competitive 
environments, defense of military units from a variety types of attacks, 
communication problems, certain types of teaching, chess and chess-like games [2]. 

In the continuous researches of our team, a class of problems is defined as a 
class of unsolved combinatorial problems [3].  

The class named RGT is a subclass of Optimal Strategy Provision (OSP) 
problems. The RGT problems meet the following requirements: 
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 there are (a) interacting actors (players, competitors, etc), performing (b) 
identified types of actions in the (c) specified types of situations; 

 there are identified utilities, goals for each actor; 

 actions for each actor are defined. 
Actors perform their actions in specified periods of times and do affect 

situations by actions in time t by transforming them to new situations in time t+1 
trying to achieve the best utilities on that situations (goals) by regularities defining 
these actions. 

1.2.1.  Achievements in RGT and some open questions 
There are certain achievements for the RGT class, some of which are listed 

below: 
The proposed in [4,5] theory of mental doings provides ways for 

constructive and adequate models of various cognitive functions, e.g. classification, 
explanation, etc. We have implemented a knowledge-based expert system, RGT 
Solver18, which is able to utilize those cognitive functions. 

The developed software can examine the developed models for systemic 
classifiers of RGT problems: algorithms and structures have been developed to 
provide an adequate description of systemic classifiers and to ensure their 
correspondence [6], and their adequacy were demonstrated by experiments [7]. 

RGT class combinatorial problems are reducible to each other [8]. 
The results of the work are applicable to the actual problems of real-time 

detection of means of attack and protection of the enemy with the help of 
autonomous drones and making the best decisions of counteraction (attack, retreat, 
investigation) in such situations. In [9], the defense of navy from air threats is 
described as a RGT class problem and certain solutions are provided. 

The natural situations of different problems are presented differently, while 
the transformation of natural situations (images) into software-presented ones 
(symbolically) is another widely discussed topic of the study with frequently 
provided solutions of machine learning [10, 11].  

Particularly, in [11], the author introduces a new method of object detection, 
which can be useful for some RGT problems situations' processing and ensures the 
effectiveness and fast-working process. It also detects the hidden objects, which 
cannot be detected adequately by a human without any tools. However, the solution 
is provided for sequential frames processing and not for single images. 

We consider the transformation of a situation to Solver as a computer vision 
problem, particularly, image classification and object detection. Since Neural 
networks are the leading method of solving such problems all over the world, we 
have also chosen them as a tool. 



201 

Currently, the first layer of Solvers is a symbolical input (Fig. 1), which is 
done by experts/programmers. 

The natural presentation of 
situations are different (Fig. 2) and, 
currently, there is no way to pass the 
image presentations of situations to the 
Solver in a regular way. Thus, in the 
current work we aim to develop an 
interface for regular transformation of 
natural presentations of situations into 
Solver environment. The problem can be divided into two subtasks: 

 

Fig. 2. Natural Presentations of Situations: Battles (Left) and Chess (right) 

a. Detecting the situations from the given image. 
b. Modifying the situation to acceptable for the Solver form.  
1.2.2.  Battle Field as RGT class problem 
The Battle Field can be considered as a RGT problem by the following 

interpretation (Fig. 3):  
1. The battling sides can be 

considered as interacting actors; 
2. Military units’ movements, 

attacks can be considered as actions; 
3. The battle field area 

including the military units can be 
considered as situations; 

4. Different situations can 
be considered as goals: capture 
objects, destroy enemy units, push 
frontline. 
 

 

Fig. 1. Symbolic presentation in the Solver

Fig. 3. Actors and Actions in Battle Field Problem
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1.3. Related Works 
During our research several works to detect the chess board and do piece 

classification were considered. In most researches  (3D objects) the board, 
detection is done via image processing and not machine learning by using the 
already developed model from opencv. (canny edge detection and Hough line 
detection) [12]. 

In [13], the author describes the developed model for 3D objects/images, 
using the mentioned opencv model for board detection and Caffe deep learning 
framework and pre-trained AlexNet [14] and achieved pretty high 99% accuracy. 
The shortcomings of the model are a few: a) the model is too dependent on certain 
construction of the board and pieces, i.e. it works badly for the pieces and the board 
of other construction than the training set does.  

The Chessify project, launched by Fimetech LLC ([15]) in 2016 provides a 
solution for chess board detection and piece classification for 2D objects with 
pretty high accuracy. However, Chessify is the best among similar solutions 
worldwide by universalization, it still supports only 2D detections and is not open-
source. 

In [16] the model described by the author for the chess board detection 
avoids using the opencv module but includes the manual selection of the four 
corners of the board in the specified order, which we also aim to automatize since 
in other than chess situations it might be hard to specify boundaries of the situation 
manually. However, the model uses SVM for training and is simpler than other 
models, the accuracy of the pieces’ classification is much lower (~85%), and it is 
still dependent on certain shapes of figures (training dataset).  

All the described models and others researched have several disadvantages 
that we aim to avoid, if possible, while building our own model – a) dependence 
over certain shapes of board and pieces (the most common issue); b) complex 
models; c) low accuracy. 

1.4. Current work 
Currently, the input layer in the RGT Solver is provided by experts/ 

programmers in a symbolical way.  
We aim to develop a tool for regular passing of natural (image) presentations 

of RGT situations to symbolical ones in the RGT Solver. For this purpose, we are 
using ANN. 

As it is proven, the RGT class problems are reducible to each other, we are 
providing experiments for chess, so the current work concentrates on the chess 
situations and pieces. 

The existing models offer a classification for certain types of pieces – 
training of NN was done on the exact board and pieces. Its achievement is 99 % by 
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the test (same types), but if we change the figure shapes somehow (take another 
board and other pieces with different shapes) the result will be lower. We aim to 
enhance the classification to be universal for detection of different shapes of 
figures.  

For the users’ convenience, we have developed models both for 2D and 3D 
images. For experimenting we concentrate more on 2D objects. 

We discuss the parallels and the possibility of transmission of the achieved 
results of chess to the battle field problem in this paper as well. 

We provide two algorithms for our purpose – each of them will be described 
in separate sections. 

2. Simple Algorithm 
The task is as follows: Given the image of the chess board, it is necessary to 

classify each field as an empty one or a certain figure depending on its color and 
type (black rook, white pawn etc). 

In other words, this task can be stated as follows: to classify nuclear 
classifiers from the situation, which are attributes of pieces for chess: color, type 
and coordinates. 

2.1. Chess Piece Classification 
2.1.1. 2D images 
2.1.1.1. Dataset 
A dataset of around 300 images of chess boards with existing figures on 

them was collected. A Python script was written to split the board into 64 equal 
squares (8 rows, 8 columns). The pieces 
constructions are of various types which insures 
universalization of the model. Each of the 64 
received images of every picture includes either 
an empty square or a figure with certain color and 
figure type, which was annotated. The dataset was 
split randomly into training and testing sets by a 
3:1 ratio. There are overall 13 classes numerated 
from 0 to 12, where 0 corresponds to an empty 
field, 1 to 6 is for white pawn, bishop, knight, 
rook, queen and king and from 7 to 12 for black 
pieces with the same order. Some samples from 
the dataset are shown in Fig. 4.  

 

 

 

Fig. 4. Samples from Dataset of
Chess Pieces 
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2.1.1.2. Learning 
Keras was chosen as the neural network library for our model, which was 

trained to classify the pieces on images on the described dataset. VGG-like ([13]) 
convolutional network of the following construction is selected:  

 2 convolutional layers with 32 neurons and kernel size of (3,3), 

 Max-Pooling layer with a pooling size (2,2), 

 2 convolutional layers with 64 neurons and kernel size of (3,3), 

 Max-Pooling layer with a pooling size (2,2), 

 Flattening the 2D arrays for fully connected layers, 

 3 Dense layers with 256, 128, 64 neurons correspondingly and with RELU 
activation, 

 The last layer is dense layer with 13 classes (for each of classes of our 
classification) and Softmax activation. 

2.1.1.3. Results 
The accuracy of 97.3 % on the test dataset of piece classification was 

achieved. The corresponding confusion matrix 
is provided in Fig. 5. 

2.1.2.  3D images 
[13] was taken as the base for this work. 

The dataset was collected as combination of 
datasets provided in [13], [16] and manually 
collected dataset of various constructions, 
which ensures some universalization of the 
model. As long as all our models are built in 
Keras, and there is no built-in model for 
AlexNet there, we choose the VGG-16 as our 
model. Accuracy of 94.2 % is achieved. 

3. Enhanced Algorithm 
The algorithm includes several steps 
3.1. Detecting Pieces 
The dataset of chessboard images including the chess pieces and empty 

fields was collected. All chess figures were marked and labeled in each of these 
images using LabelImg [18]. We have built ANN based on the collected dataset to 
detect the chess pieces from the board. 

3.2. Coordinate Comparison 
After detecting the pieces, we have a set of pieces with coordinates (x1; x2; 

y1; y2). 
For farther simplicity, let’s denote the following: 

Fig. 5. Confusion Matrix of 
Piece Classification 
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ᇱ; ௜ݕ
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ᇱᇱሻ	ܿ݀݊݋݌ݏ݁ݎݎ݋	݋ݐ	݄݁ݐ	݁ݎݑ݂݃݅	 ௜݂ 
௫ܣ ൌ ᇱᇱݔሺ݃ݒܽ െ ,ᇱሻݔ ;ᇱݔሺݎ݋݂ ᇱᇱሻݔ ∈ ܺ െ  ሻ݈ܽݐ݊݋ݖ݅ݎ݋ሺ݄	݈݂݀݁݅	݂݋	݁݀݅ݏ	݊ܽ݁݉	݄݁ݐ
௬ܣ ൌ ᇱᇱݕሺ݃ݒܽ െ ,ᇱሻݕ ;ᇱݕሺݎ݋݂ ᇱᇱሻݕ ∈ ܻ െ  ሻ݈ܽܿ݅ݐݎ݁ݒሺ	݈݂݀݁݅	݂݋	݁݀݅ݏ	݊ܽ݁݉	݄݁ݐ

The next step is to understand how many rows or columns are between 
certain two figures. As long as all the fields' dimensions are nearly equal (the more 
the angle of shooting differs from 90o, the less equal they are), we use the 
following equation to determine the number of the rows between figures ݂ᇱ and ݂′′ 
with coordinates [y1’, y2’] and [y1’’, y2’’]: 

ሺ௬మ	~	ݎ	 
ᇲି	௬భ

ᇲሻା	ሺ௬మ
ᇲᇲି	௬భ

ᇲᇲሻ

ଶ	୶	஺೤
,	  (1) 

where r is the number of the rows between the figures. In the future we will 
research how this equation should change if the angle of shooting is higher or 
lower than 90o. Here we just round the received number to the nearest integer (it 
can also be negative, negative rows mean movement to the left and negative 
columns mean movement down).  

The same is done for columns and the equation is analogic. 
3.3. Creating Initial Board 
Now it is time to merge the received figures together. The algorithm works 

as follows: one of the pieces is taken as an initial point with the row index and the 
column index equal to 0; on each iteration, the program chooses a not yet 
considered figure and counts the number of rows and columns by equation (1) and 
saves the results as a tuple (f, r, c), where f is the figure type (black bishop, white 
rook etc), r and c are the indexes of row and column correspondingly (can be 
negative). 

After all iterations, the program gets the minimum number of all column 
indexes, if it is negative, it sums all the received tuples' third element by the 
absolute value of the minimum number. The same thing is being done for rows. 

At the end, we receive coordinates for each figure. 
We fill the missing values with empty fields – for example, if we have some 

figures on coordinates (0;0) and (0;3), but there is nothing in (0;1) and (0;2), we fill 
them with empty fields.  

3.4. Extending Board by missing lines/rows 
If the initial board had an empty corner row(s) or column(s) they would be 

missing after these steps and we would have a matrix with dimensions 7x8 (8x7) (if 
only one row (column) was empty). The task is to find on which of 2 sides the 
empty row must be added. 
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Actually, this task is local for chess and probably would not appear in other 
RGT class problems. For instance, in the Battle Field problem, after detecting all 
military units, all ‘fields’ or ‘areas’ around (maybe with some limited range 
depending on zone where it is possible to hold fights) can be considered as empty. 
Of course, this brings about another task, to detect, for example, a field, a flatland, 
or which parts of the area are plateau, which can affect the possible movements 
there, but this is also a local problem and would be considered in future in more 
detailed researches on the Battle Field problem.  

 We take all empty fields we have in our received board and compare the 
images (currently we use histogram comparison, but this approach has to be 
improved and will be researched in future) of those fields to each of 8 parts of a 
new line from top. If all the 8 parts match (more than the parts of the other line) with 
some empty fields in our board, then we consider the line as searched. We do the 
same for each side and we make as many iterations as many lines are missing. 

4. Application in the RGT Solver 
After both modules for board detection and piece classification are ready, the 

already classified figures and empty fields are processed to JSON format as it is 
described in the picture below. The Solver receives a list of 64 JSONs as an input 
(Fig. 1) each of which refers to a certain field and contains nuclear classifiers’ 
values. For example, the first raw of this image corresponds to the field with 
coordinates (0, 0), which is a8 on chess board, figure color on that field is black (2) 
and figure type is rook (4). Finally, the chess situation in the usual for the Solver 
format is achieved and systemic classifications are processed. 

Table 1 

Comparison of the Results 

Criterion/Method Simple 
Algorithm 

Enhanced 
Algorithm 

Chessify Chess ID ChessVision 

Accuracy 97.3% 95.1% Unknown 
(high) 

99% 85% 

Universalization Yes Yes Yes No No 
Open-Source Yes Yes No Yes Yes 
Costly Training No Yes Unknown Yes No 
Used Model or 
Method 

VGG-like 
ANN  

Mobilenet 
SSD  

Unknown AlexNet SVM 

Automate Board 
Detection 

Yes 
(openCV) 

Yes Yes Yes 
(openCV) 

No (needs 
marking) 
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5. Parallels with Battle Field Problem  
5.1. Classifying Units 
For the Battle Field problem, tanks, rockets etc can be considered as units. 

Military units in the given image should be classified similar to the units in chess. 
5.2. Difficulties 
Some difficulties appear at transforming the chess advances to the battle 

field: 
1. Quality data – if the chess piece constructions are the same all over the 

world, the weapons are different in different countries. Anyway, the most popular 
types are of the same construction (e.g. tanks) 

2. Classifying the actor/side – for the chess it is simple – the actor can be 
classified just by the piece’s color. For the battle field, it is harder because battling 
sides’ military units of the same type difference is sometimes even harder to detect 
by a human. This is still possible to realize, it is just harder than the corresponding 
task for chess. 

 

Fig. 6. Military Units of Different Countries: Armenia (left) and Azerbaijan (right) 

3. Angle – Angle of unit in an image and camera was not much an important 
task for chess, as long as it is not hard to change the angle for the photographer, 
while for the battlefield it is sometimes possible to shoot only from a limited 
number of places/angles. These also makes the minimal required quality of the 
dataset higher.  

Conclusion 
Methods for the situation’s natural presentation transformation to Solver’s 

symbolic presentation are proposed. Algorithms use Neural Networks for 
classification/detection of units and are described for certain RGT class problem – 
chess. The first algorithm includes classification of chess pieces, the second one – 
detecting the chess pieces from an image and detecting board by them. The 
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discussed models were integrated with Solver 18. The possible applications of 
solutions for battle field problems are described and some difficulties over battle 
field interpretation by chess solutions are listed. Implementation of the model for 
Battle Field problem, including dataset collection, researching ways for solution of 
described difficulties and ANN training are considered as the future steps. 
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Ն.Պ. ՀԱԿՈԲՅԱՆ 

ՊԱՏԿԵՐՆԵՐԸ ՍԻՄՎՈԼԻԿ ՆԵՐԿԱՅԱՑՄԱՆ ՓՈԽԱՐԿԵԼՈՒ ՀԱՄԱԿԱՐԳ 

ՊԱՇՏՊԱՆՈՒԹՅԱՆ ԵՎ ՄՐՑԱԿՑԱՅԻՆ ԿՈՄԲԻՆԱՏՈՐ ԽՆԴԻՐՆԵՐԻ ՀԱՄԱՐ 

Առաջարկվել են իրավիճակի բնական ներկայացումը Solver ծրագրային ապահով-

ման սիմվոլիկ ներկայացմամբ փոխակերպելու մեթոդներ: Ալգորիթմներում, որոնք նկա-

րագրվում են RGT դասի որոշակի խնդրի՝ շախմատի համար, կիրառվում է նեյրոնային 

ցանցերով ուսուցում՝ օբյեկտների ճանաչման և հայտնաբերման համար։ Առաջին ալգո-

րիթմը ներառում է շախմատային խաղաքարերի դասակարգում, երկրորդը` պատկերից 

շախմատային խաղաքարերի, իսկ վերջիններիս միջոցով` տախտակի ճանաչում: Վերո-

նշյալ մոդելները ինտեգրվել են Solver18-ին: 

Նկարագրվում է ստացված լուծումների հնարավոր կիրառությունը ռազմական որո-

շակի խնդիրներում, և քննարկվում են այդ խնդիրների մեկնաբանման հետ կապված որոշ 

դժվարություններ: Որպես հետագա քայլ դիտարկվում է մոդելի իրականացումը ռազմական 

խնդիրների համար, այդ թվում՝ տվյալների հավաքագրում, նկարագրված դժվարություն-

ները հաղթահարելու ուղիների հայտնաբերում և նեյրոնային ցանցերի միջոցով ռազմա-

կան միավորների ուսուցում: 

Առանցքային բառեր․նեյրոնային ցանցեր, պատկերի ճանաչում, օբյեկտի հայտնա-

բերում, սիստեմիկ դասակարգիչներ, ալգորիթմներ։ 

Н.П. АКОПЯН 

СИСТЕМА ПЕРЕВОДА ИЗОБРАЖЕНИЙ В СИМВОЛЬНОЕ 
ПРЕДСТАВЛЕНИЕ ДЛЯ КОМБИНАТОРНЫХ ЗАДАЧ ЗАЩИТЫ И 

КОНКУРЕНЦИИ 

Предложены методы преобразования естественных представлений ситуаций в 
символьное представление Solver-а. Алгоритмы используют нейронные сети для 
распознавания/обнаружения объектов и описаны для определенной задачи класса 
RGT - шахмат. Первый алгоритм включает распознавание шахматных фигур, второй 
- обнаружение шахматных фигур по изображению и нахождение доски по ним. 
Обсуждаемые модели интегрированы с Solver18.  

Описаны возможности применения полученных решений в военных задачах 
(battlefield problem) и перечислены некоторые трудности, связанные с интерпретацией 
данной задачи полученными решениями. В качестве следующих шагов рассматривается 
реализация модели для проблемы Battle Field, включая сбор данных, поиск путей 
решения описанных трудностей и обучение посредством нейронных сетей. 

Ключевые слова: нейронные сети, распознавание изображения, обнаружение 
объектов, системные классификаторы, алгоритмы. 


