ЛИТЕРАТУРА

Багдасарян Г.Б., Арутюнян Г.А., Багдасарян В.Г. Определение основных углов резца по разрывному полю обрабатываемого материала // Изв. НАН РА и ГИУА. Сер. ТН. - 1995. - Т.48, № 1. - С. 4-7.

Багдасарян Г.Б., Стакян М.Г., Багдасарян В.Г. Метод определения оптимальной геометрии сверла в зависимости от физико-механических свойств обрабатываемых материалов // Изв. НАН РА и ГИУА. Сер. ТН. - 1995. - Т.48, № 3. - С. 166-170.

Клушин М.И. Резание металлов. - М.: Машгиз, 1953. - 430 с.

Касьян М.В., Багдасарян Г.Б., Арутюнян Г.А. Оптимизация технологических факторов при резании методом многофакторного планирования экспериментов. - Ереван: Айастан, 1990. - 156 с.

Касьян М.В., Багдасарян Г.Б., Арутюнян Г.А. Методы планирования экспериментов в области резания металлов и математической обработки результатов. - Ереван: Айастан, 1976. - 192 с.

Грановский Г.И., Грановский В.Г. Резание металлов. - М.: Высшая школа, 1985. - 298 с.

ГИУА

23.05.1997

Изв. НАН РА и ГИУА. Сер. ТН. 2000. Т. LIII, № 1.

ՀՏԴ 621.316

ՀԱՄԱՌՈՏ ՀԱՂՈՐԴՈՒՄ

Ա. Խ. ԳՐԻԳՈՐՅԱՆ, Ա. Թ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Կ. Վ. ՎԱՐԴԱՆՅԱՆ

ՖԵՌՈՄԱԳՆԻՍԱԿԱՆ ՄԱՐՄՆԻ ԱՐԱԳՈՒԹՅԱՆ ԻՆԴՈՒԿՑԻՈՆ ՎԵՐԱՓՈԽԻՉԻ ՄԱԳՆԻՍԱԿԱՆ ԴԱՇՏԻ ՀԵՏԱԶՈՏՈՒԹՅՈՒՆ

Ներկայացված են ինդուկցիոն վերափոխիչի մագնիսական դաշտի ուսումնասիրության արդյունքները, մագնիսական շղթայի փոխարինման սխեմաները և մաթեմատիկական մոդելները։

Представлены результаты исследований магнитного поля индукционного преобразователя, схемы замещения магнитной цепи и математические модели.

Ил. 4. Библиогр.: 4 назв.

The results of the magnetic field research, the substitution schemes and mathematical models of the inductive transformer are given.

I $\ell\ell$. 4. Ref. 4.

Ներկայումս արտադրությունում կիրառվող չափիչ համակարգում [1] օգտագործելու համար առաջարկվում է ֆեռոմագնիսական մարմնի գծային արագության ինդուկցիոն նոր վերափոխիչ (նկ. 1), որն ունի պարզ կառուցվածք, հնարավորություն է տալիս չափումները կատարել ֆեռոմագնիսական մարմնի շարժման հետագծի համեմատաբար մեծ շեղումների, ինչպես նաև մարմինների չափերի բավականին լայն միջակայքերի դեպքում։

Նկ. 1-ում 1-ը և 2-ը համապատասխանաբար չափիչ և աշխատանքային փաթույթներն են, որոնք տեղադրված են ֆեռոմագնիսական նյութից պատրաստված մագնիսալարի 3 միջուկի վրա, 4-ը մագնիսալարի բևեռներն են, իսկ 5-ը՝ շարժվող ֆեռոմագնիսական մարմինը։ Վերափոխիչի աշխատանքային փաթույթով հոսող հաստատուն հոսանքի մագնիսական դաշտի ուժագծերն ընդգրկվում են չափիչ փաթույթի գալարներով։ Երբ վերափոխիչի վրայով անցնում է ֆեռոմագնիսական մարմինը, տեղի է ունենում համակարգի մագնիսական հաղորդականության և, հետևաբար, միջուկի (ս մագնիսական հոսքի փոփոխություն, որն էլ չափիչ փաթույթի Wչափ գալարներում ինդուկցում է eչափ էլեկտրաշարժ ուժ (ԷՇՈՒ).

$$\mathbf{e}_{\boldsymbol{\xi}\boldsymbol{\omega}\boldsymbol{h}} = -\mathbf{W}_{\boldsymbol{\xi}\boldsymbol{\omega}\boldsymbol{h}} \ \frac{d\Phi_{\boldsymbol{\delta}}}{dt} : \tag{1}$$

Իրարից որոշակի հեռավորության վրա տեղադրված երկու միանման վերափոխիչների չափիչ փաթույթներում ինդուկցված այս eչափ ազդանշանների չափման միջոցով էլ որոշվում է շարժվող մարմնի արագությունը [1]։

Դիտարկվող վերափոխիչի աշխատանքը վերլուծելու, մաթեմատիկական մոդելները ստեղծելու, հաշվարկի ու նախագծման մեթոդները մշակելու նպատակով ներկայացվող աշխատանքում կատարվել է վերափոխիչի մագնիսական դաշտի հետազոտություն` ընդունելով, որ մագնիսական դաշտի փոփոխությունը տեղի է ունենում միայն վերափոխիչի նկատմամբ ֆեռոմագնիսական մարմնի դիրքի փոփոխության հաշվին։ Նման ընդունելությունը հնարավորություն է տալիս ԷՇՈՒ-ի որոշման (1) արտահայտությունը ներկայացնել հետևյալ պարզ տեսքով.

$$e_{\mathfrak{suh}} = -W_{\mathfrak{suh}} \; rac{\Phi_{\mathfrak{smin}} - \Phi_{\mathfrak{smin}}}{\Delta t}$$
 ,

որտեղ $\Phi_{u_{max}}$ - ը և $\Phi_{u_{min}}$ – ը մագնիսական հոսքի առավելագույն և նվազագույն արժեքներն են միջուկում, Δt - ն այն ժամանակամիջոցն է, որի ընթացքում տեղի է ունենում մագնիսական հոսքի $\Phi_{u_{max}}$ - $\Phi_{u_{min}}$ = $\Delta \Phi$ փոփոխությունը։

(2)

Մագնիսական հոսքն առավելագույն Φ_{մmax} արժեք ձեռք է բերում համակարգի առավելագույն մագնիսական հաղորդականության դեպքում, այսինքն, երբ մարմինը վերափոխիչի նկատմամբ գրավում է կենտրոնական դիրք։ Համապատասխանաբար, մագնիսական հոսքը նվազագույն Φ_{մmin} արժեք կունենա համակարգի նվազագույն մագնիսական հաղորդականության դեպքում, երբ վերափոխիչից բացակայում է մարմինը։ Վերը շարադրվածից հետևում է, որ ելքային e_{չափ} ազդանշանի հաշվարկի համար բավարար է համակարգի երկու բնութագրական վիճակների (առաջին՝ վերափոխիչն առանց ֆեռոմագնիսական մարմնի և երկրորդ՝ վերափոխիչը կենտրոնական դիրքում գտնվող ֆեռոմագնիսական մարմնով) ուսումնասիրությունը։

Բնութագրական վիձակներում վերափոխիչի աշխատանքային փաթույթի մագնիսական դաշտի հետազոտման համար կիրառվել է վերջավոր աձերի թվային մեթոդը [2]։ Դաշտի ուսումնասիրվող տիրույթը բաժանվել է 44(25=1100 հատ հանգույցներ ունեցող ցանցի։ Հաշվարկների ժամանակ մագնիսալարի մագնիսական դիմադրությունն անտեսվել է, իսկ փաթույթներով ընդգրկված տիրույթների մագնիսական թափանցելիությունն ընդունվել է հավասար օդի մագնիսական թափանցելիությանը։ Հետազոտությունների համար օգտագործվել է Հայաստանի պետական ձարտարագիտական համալսարանի մաթեմատիկական մոդելավորման լաբորատորիայում կազմված համակարգչային ծրագիրը։ Դաշտի ստացված նկարները տրված են 2 ա (առաջին բնութագրական վիձակ) և 2 բ (երկրորդ բնութագրական վիձակ) նկարներում։ Ընդ որում, բնութագրական վիձակներում վերափոխիչի մագնիսական դաշտը մոդելավորվել է շարժվող մարմնի չափերի բավականին լայն միջակայքերի համար։ Բոլոր դեպքերում դաշտի ստացված նկարները որակապես չեն տարբերվել։

Նկ. 2

Վերլուծության նպատակով դաշտի նկարները ներկայացվել են մագնիսական հոսքերի տիրույթներն իրարից բաժանող սահմանային ուժագծերով (նկ. 3 ա և բ) [3]։

Նկ. 3ա-ում պատկերված դաշտում ինդուկցիայի՝ I և II սահմանային գծերով սահմանափակված տիրույթներով հոսում են Φ_{d1} և Φ_{d2} ցրման մագնիսական հոսքերը, որոնք անցնում են միայն օդով (մագնիսալարի միջուկով անցնող և չափիչ փաթույթի գալարներին կցված հոսքերը պայմանականորեն անվանենք աշխատանքային, իսկ մնացածները՝ ցրման հոսքեր)։ Աշխատանքային Φ_1 մագնիսական հոսքն անցնում է մագնիսալարի միջուկով, բնեռներով և միջուկից վերև գտնվող օդային տարածությամբ.

Նկ. 3 բ-ում պատկերված դաշտում I և II սահմանային գծերով սահմանափակված տիրույթներով հոսում են Φ_{d1} և Φ_{d2} ցրման հոսքերը, իսկ Φ_{d3} ցրման հոսքը, որն անցնում է օդով և շարժվող մարմնի մի մասով, գրավում է I և III սահմանային գծերի միջև եղած տիրույթը։ Բևեռներով և նրանց միջև օդային տարածությամբ անցնող հոսքի այն մասը, որը չի մտնում շարժվող մարմնի մեջ, նշանակված է Φ_1 - ով, իսկ Φ_2 հոսքն անցնում է մագնիսալարի միջուկով և դրանից ներքև գտնվող օդային տարածությամբ։ Սահմանային III և IY գծերով սահմանափակված տիրույթով հոսում է Φ_3 հոսքը, որն անցնում է մագնիսալարով, օդով և շարժվող մարմնով։

Վերափոխիչի մագնիսական դաշտի վերլուծության հիման վրա էլեկտրամագնիսական համակարգի երկու բնութագրական վիձակների համար կազմվել են մագնիսական շղթայի փոխարինման սխեմաները (նկ. 4 ա և բ)։ Առաջին փոխարինման սխեման (նկ. 4 ա) համապատասխանում է դաշտի 3 ա նկարին, իսկ երկրորդը (նկ. 4 բ)՝ 3 բ նկարին։ Սխեմաները կազմելիս ցրման հոսքերն անտեսվել են։

Առաջին փոխարինման սխեմայում նշված են հետևյալ մեծությունները. F - աշխատանքային փաթույթի մագնիսաշարժ ուժ (ՄՇՈՒ), Փ $_{a}$ - միջուկով անցնող մագնիսական հոսք, $R_{m\delta 1}$ - բնեռների միջև գտնվող օդային տարածության վերին մասի, $R_{m\delta 2}$ - Φ₂ մագնիսական հոսքի օդային Ճանապարհի, R_{mp} , R_{md} - համապատասխանաբար բնեռի և միջուկի մագնիսական դիմադրություններ։

Երկրորդ փոխարինման սխեման կազմելիս շարժվող մարմինը և վերափոխիչի միջուկը բաժանվել են 3 տեղամասերի՝ համապատասխանաբար Լշտ, Լշտ, Լշտ և Լտ, Լտ, Լտ երկարություններով, որոնք որոշվում են հետևյալ կերպ. $L_{2^{t1}}=L_{2^{t3}}=L_{2^{t/2}}/4$, $L_{2^{t2}}=L_{2^{t/2}}/2$, $L_{t1}=L_{t3}=(L_t - L_{t2})/2$ ($L_{2^{t-1}}$ և L_{t-1} համապատասխանաբար՝ շարժվող մարմնի և միջուկի երկարություններն են):

Յ ամակարգի առաջին բնութագրական վիձակը նկարագրող մաթեմատիկական մոդելը կազմելու համար, ընդունելով, որ հայտնի է Φ₁ մագնիսական հոսքը, ուղիղ խնդրի լուծման հաջորդականությամբ մաթեմատիկական բանաձներով նկարագրվել են մագնիսական շղթայում առկա երևույթներն ու օրինաչափությունները։ Մագնիսական հոսքի արժեքը միջուկում (տվյալ դեպքում այս արժեքը համապատասխանում է (2)-ի Φ մաin-ին) որոշվել է մագնիսական շղթայի հակառակ խնդրի լուծումով՝ հատվածը կիսելու թվային մեթոդով [4]: Համակարգի երկրորդ բնութագրական վիձակն արտահայտող մաթեմատիկական մոդելը ստեղծելու համար, համաձայն Կիրխհոֆի առաջին և երկրորդ օրենքների, կազմվել է ութ անհայտով հավասարումների համակարգ՝ մագնիսական հոսքի անհայտ արժեքներով։ Նյուտոնի մեթոդով լուծելով ոչ գծային հավասարումների համակարգը, որոշվել են անհայտները՝ մագնիսական հոսքերի արժեքները։ Միջուկի Փս հոսքը (տվյալ դեպքում այս արժեքը համապատասխանում է (2)-ի Փ տառ -ին) հաշվարկվել է որպես միջուկի տեղամասերի Փս, Փս, Փս հոսքերի միջին թվաբանական մեծություն։

Համակարգի բնութագրական վիձակների համար հաշվարկված Փ մաս և Փ մատ արժեքներով և (2) բանաձևով որոշվում է վերափոխիչի ելքային մեծության՝ e չափ ԷՇՈՒ-ի արժեքը։

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- Գրիգորյան Ա.Խ., Հովհաննիսյան Ա.Թ., Վարդանյան Կ.Վ. Ֆեռոմագնիսական մարմնի գծային արագության չափիչ համակարգ // Կիսահաղորդչային միկրոէլեկտրոնիկա (Առաջին ազգային գիտաժողովի նյութեր). - Երևան,1997. - էջ 188-190:
- 2. Бинс К., Лауренсон П. Анализ и расчет электрических и магнитных полей.- М.: Энергия, 1971.- 376 с.
- 3. Шоффа В.Н. Анализ полей магнитных систем электрических аппаратов. М.: МЭИ, 1990. 112 с.
- Գրիգորյան Ա. Խ. Կառավարման և մեքենայացման էլեկտրամագնիսական համակարգեր։ Դոկ. ատենախոսություն գիտական զեկուցման ձևով. - Երևան,1996. - 89 էջ։

15.01.1998

Изв. НАН РА и ГИУА. Сер. ТН. 2000. Т. LIII, № 1.

ՀՏԴ 621.314

ՀԱՄԱՌՈՏ ՀԱՂՈՐԴՈՒՄ

Հ.Թ. ԳԱՍՊԱՐՅԱՆ

ՀԱՍՏԱՏՈՒՆ ՀՈՍԱՆՔԸ ՓՈՓՈԽԱԿԱՆԻ ՁԵՎԱՓՈԽՈՂ ՍՏԱՏԻԿԱԿԱՆ ՁԵՎԱՓՈԽԻՉ

Աշխատանքի նպատակն է՝ պարզ կառուցվածք և զրոյին մոտ կարգավորվող հաձախականությամբ սինուսոիդալ ելքային լարման ստացում։ Ձևափոխիչը կազմված է սնման աղբյուրին զուգահեռ միացված երկու ինվերտորներից։ Դրանք համալարված են կարգավորվող կամավոր հաձախականություններով, որոնց տարբերությունը հավասար է ելքային ազդանշանի հաձախականության կրկնապատիկին։ Ելքում բեռը միացվում է ղեկավարվող տիրիստորային կամրջակի միջոցով։