<u> 24844445 802 ФРЅПРВИРБОВРР ЦИЦТВОГИЗЕ БЕДБИЦТРГ</u> ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Տեխախկական գիտութ, սերիա

XXXV. No 4, 1982

Серия технических наум

НАУЧНЫЕ ЗАМЕТКИ

э. А. ДЖАНГУЛЯП

СОПРОТИВЛЕНИЕ РЕЗАНИЮ ГРУПТА КРИВОЛИНЕЙНЫМ РЕЖУЩИМ ЛЕЗВИЕМ

Рассмотрение процесса резания в данной работе базируется на закономерностях статики сыпучей среды, обладающей сцеплением, разработанных и сформулированных в теоретических концепциях проф. Артемьева К. А., проф. Баловиева В. И., проф. Ветрова Ю. А

На рисунке I изображена схема взаимодействия режущего лезвия с грунтом.

В процессе резания грунта при движении режущего лезвия по направлению, отмеченной стрелкой А, на элементарную площадку со сто-

ронами dy_0 , dS действуют нормальная dN и касательная dT силы — составляющие полного сопротивления dP_0 , равные

$$dN = 3 dy_0 dS$$
, $dT = 1 dy_0 dS$.

где э, т — нормальное и касательное напряжения грунта на рабочей поверхности лезвия.

Усилие dP_0 , действующее на данную площадку, равно:

$$dP_0 = \frac{dN}{\cos \rho_0} = \frac{s}{\cos \rho_0} dy_0 dS.$$

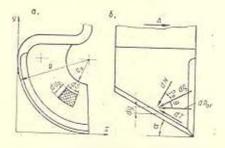


Рис. 1. Схема взяимодействия криволицейного режущего лезвия с грунтом.

а горизонтальная составляющая этой силы dP_m

$$dP_{01} = dP_0 \cos \theta = \frac{\cos \theta}{\cos \rho_0} = dy_0 dS.$$

Согласно принятым на схеме обозначенням:

$$dy_0 = \frac{dy}{\sin \alpha}; \qquad \theta + p_0 = 90^\circ - \alpha$$

тогла

$$dP_{01} = \frac{\cos \theta}{\cos \rho_0 \sin \alpha} \, \alpha \, dy \, dS. \tag{1}$$

После преобразований выражение (1) примет следующий вид:

$$dP_{eq} = (1 + \operatorname{ctg} a \operatorname{tg} \varrho_0) \circ dy dS$$

Обозначив (1 + ctg \circ tg ρ_{\bullet}) через η_{\bullet} сопротивление резанию определяют формулой:

$$P_{o_1} = r_i \int_{S}^{R_o} \sigma dy \int_{S}^{L} dS.$$

Нормальное напряжение в с достаточной точностью [1, 2] можно вычислить по формуле:

$$\sigma = A(\gamma y + P_0 + K \operatorname{ctg} \rho) - K \operatorname{ctg} \rho$$

тогда

$$P_{01} = \eta \left[A \left(\frac{1y^2}{2} - P_0 y + y K \operatorname{ctg}_{\Gamma} \right) - y K \operatorname{ctg}_{\Gamma} \right] \left[\int_{0}^{R-R_0} \int_{0}^{L} dS. \right]$$
 (2)

Выражая элементарную длину кривой dS через dx, dy, получаем:

$$dS = \sqrt{(dx)^{2} + (dy)^{2}} = \sqrt{1 + y^{2}} dx;$$

$$y = R - \sqrt{R^{2} - (x - R)^{2}} : \qquad Y' = \frac{x - R}{\sqrt{R^{2} - (x - R)^{2}}}$$

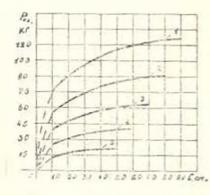


Рис. 2. График записимости сопротивления резанию от толщины груптовой стружки C: I-R=9 см; $R_0=3$ см, 2-R=8 см, $R_0=3$ см; 3-R=7 см; $R_0=3$ см; 4-R=6 см, $R_0=3$ см: 5-R=5 см, $R_0=3$ см

Решив уравнение (2) с соответствующими преобразованиями, окончательно получим:

$$P_{01} = \tau_1 (R - R_0) R A_0 \left[\frac{\tau_1 (R - R_0)}{2} - P_0 + \frac{\tau_1 (R - R_0)}{2} \right] + \left(1 - \frac{1}{A_0} \right) K \operatorname{ctg} \rho \left[\arcsin z + \frac{\tau_1}{2} \right].$$
 (3)

Здесь $A_0 = A4$, t = 1.45 — коэффициент, учитывающий пространственность процесса и то, что резание производится острым ножом с углом резания, отличным от 45'; $t = \arcsin \frac{1/R}{R} \cdot \frac{R}{R}$;

 $P_0 = K_0 \gamma C_1$ — давление вышележащих слоев грунта. $\kappa z/c M^2$: $K_0 \approx \frac{1-\sin p}{1+\sin p}$; C_1 — средняя толшина грунтовой стружки, которая дли рассматриваемой геометрии определяется следующим образом:

$$C_1 = \frac{1}{R} \int_0^C \sqrt{R^2 - y^2} \, dy = \frac{1}{R} \left[0.5 \, C \, \sqrt{R^2 - C^2} + \frac{R^2}{2} \arcsin \frac{C}{R} \right]$$

Определение величины P_{01} по выражению (3) доводится до численных решений, характеризуемых следующими данными: $\rho=30^\circ$, $\rho_0=26^\circ$, $\alpha=30^\circ$ — соответственно, углы внутреннего трения грунта, трения грунта о лезвие и резания; $K=0.4~\kappa zc/cm^2$ — коэффициент сцепления грунта; $\gamma=0.02~\kappa z/cm^2$ — объемная масса грунта; $\Lambda=1.46-\kappa$ коэффициент, зависящий от ρ , ρ_0 , σ ; R, R_0 — радиусы кривизны режущей кромки и на выходе.

На рис. 2 представлены зависимости $P_{01} = f(C)$.

На основании соответствия теоретических данных, вычисленных на ЭВМ «НАИРИ-2», с результатами экспериментальных исследований подтверждено, что из числа существующих методик расчета сил сопротивления резанию грунтов криволинейным режущим лезвием наибо-зее достоверные результаты дают расчетные схемы, основанные из теории предельных состояний грунтов.

ЕФ ЦМИПКС 20. V 1982

ЛИТЕРАТУРА

- Артемьев К. Л. Основы теории копания групта скреперами.— М.: Маштил, 1963.—— 126 с.
- 2 Ветров Ю. А. Сопротивление груптов резанию.— Киев: Изд-во Киевского универс., 1962.— 78 с.