УДК 621.391

РАДИОЭЛЕКТРОНИКА

DOI 10.53297/0002306X-2021.3.v74-325

М.С. АЗОЯН, Д.А. КАЗАРЯН

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТРАНЗИСТОРНЫХ ПАРАМЕТРИЧЕСКИХ УМНОЖИТЕЛЕЙ СВЕРХВЫСОКИХ ЧАСТОТ

Проведено экспериментальное исследование транзисторных параметрических умножителей сверхвысоких частот (СВЧ). Для расчета преобразователей СВЧ за основу принимаются экспериментально снятые вольт-амперные и вольт-кулоновые характеристики (ВАХ и ВКХ) нелинейного элемента. Задача решается графоаналитическим методом выбором необходимого количества производных от указанных характеристик, значения которых являются исходными.

Ключевые слова: гармоника, умножитель частоты, накачка, активный, реактивный, проводимость.

Введение. В настоящее время в связи с развитием телекоммуникации появилась потребность в создании надежных и малогабаритных приборов СВЧ с широкими функциональными возможностями [1], в том числе умножителей частоты, которые особенно эффективны в дециметровом и сантиметровом диапазонах частот в качестве буферной цепи передатчиков [2]. Поэтому транзисторный параметрический умножитель частоты (ТПУЧ) обладает одновременно свойствами усиления и умножения частоты входного сигнала.

Методы исследования. Из уравнений (1) и (2) на основе синтеза [3] следует, что нелинейная проводимость коллекторного p-n перехода, эквивалентная схема которого представляется в виде параллельно включенных проводимости и емкости, вносит в контуры накачки и гармоники активные и реактивные проводимости:

$$\begin{split} \dot{Y_1} &= -\sum_{p=0}^{\infty} \cdot G^1{}_{n(p+1)} sinn(p+1)\varphi + n\omega \sum_{p=1}^{\infty} \cdot C^1{}_{n(p-1)} sinn(p-1)\varphi + \\ &+ j[\sum_{p=0}^{\infty} \cdot G^1{}_{n(p+1)} cosn(p+1)\varphi + n\omega \sum_{p=1}^{\infty} \cdot C^1{}_{n(p-1)} cosn(p-1)\varphi], \quad (1) \\ &\dot{Y_n} &= -\omega \sum_{p=0}^{\infty} \cdot C^n{}_{n(p+1)} sinnp\varphi + \sum_{p=1}^{\infty} \cdot G^n{}_{np-1} sinnp\varphi + \\ &+ j[\omega \sum_{p=0}^{\infty} \cdot C^n{}_{np+1} cosnp\varphi + \sum_{p=1}^{\infty} \cdot G^n{}_{np-1} cosnp\varphi]. \quad (2) \end{split}$$

Принимая, что выходной сигнал есть n-я гармоника входного колебания, из этих выражений видно, что в случае $0 < \varphi < \pi$ нелинейная емкость вносит в контур накачки потери, а в контур гармоники - отрицательную проводимость, т.е. в системе может быть задействован режим перекачивания энергии из одного контура в другой. При этом могут появляться гармонические колебания.

При воздействии двухчастотного сигнала на нелинейную емкость напряжением от емкости C в контур накачки вносятся активные и реактивные составляющие проводимости G_1 и C_1 , а в контур субгармоники - G_n и C_n . Следовательно, в процессе преобразования образуются проводимости пассивных потерь в контурах накачки - G_{s_1} и субгармоники - G_{s_n} :

$$U_{\Sigma} = U_0 + U_1 cos\omega t + U_n cos(n\omega t + \varphi). \tag{3}$$

На основе полученных соотношений для делителя частоты построены эквивалентные схемы для контуров накачки (рис.1а) и гармоники (рис.1б).

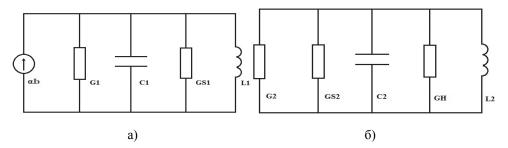


Рис. 1. Эквивалентные схемы контуров ТПУЧ: а - для сигнала накачки, б - для сигнала гармоники

На рис. 1 приняты следующие обозначения: G_1 - потери на образование гармоники; G_{s1} — пассивные потери в контуре входного сигнала; C_1 — эквивалентная емкость на частоте сигнала накачки; L_1 - внешняя индуктивность сигнального контура; G_2 — отрицательная проводимость, вносимая в контур гармоники; G_{s2} - пассивные потери в контуре гармоники; C_2 — эквивалентная емкость на частоте гармоники; $G_{\rm H}$ — проводимость нагрузки; L_2 - внешняя индуктивность контура гармоники.

Следует учесть то обстоятельство, что ВКХ и ВАХ не имеют аналитических выражений, сняты экспериментально для любого нелинейного элемента.

В итоге для упомянутых проводимостей получаем следующие приближенные аналитические выражения:

- для контура накачки:

$$G_1 = -G_n^1 \sin \varphi, C_1 = C_0^1 + \frac{1}{n\omega} G_n' \cos \varphi,$$

$$G_1^1 = G_0^{1\prime} + G_n^{1\prime} \cos\varphi, C_1' = G_n^{1\prime} \sin\varphi;$$
 (4)

- для контура гармоники:

$$G_{n} = G_{n-1}^{n} sinn\varphi, C_{n} = C_{1}^{n} + \frac{1}{\omega} G_{n-1}^{n} cosn\varphi,$$

$$G'_{n} = G_{1}^{n'} + G_{n-1}^{n'} cosn\varphi, C'_{n} = -G_{n-1}^{n'} sinn\varphi.$$
(5)

С учетом (4) и (5) компоненты, обозначенные на рис.1а,б, выражаются соотношениями

$$G_{1} = G_{n}^{n} sin\varphi, C_{1} = C_{0}^{n} + \frac{1}{\omega} G_{n}^{n} cos\varphi,$$

$$G_{2} = -G_{n-1}^{1} sinn\varphi, C_{2} = C_{1}^{1} + \frac{n}{\omega} G_{n-1}^{1} cosn\varphi.$$

Условие самовозбуждения в контуре гармоники выполняется с учетом [3]

$$G_{n-1}^1 sinn\varphi + G_{s2} = 0,$$

которое совпадает с уравнением стационарного режима автогенератора, а уравнение, определяющее фазу φ в системе, можно записать в виде

$$\frac{\omega}{n}C_1^1 + G_{n-1}^1 \cos\varphi - \frac{n}{\omega L^2} = 0.$$

Исключая в последних уравнениях фазу, решением параметрического уравнения относительно напряжения накачки, при условии резонанса в обоих контурах и при n=2, соотношение, определяющее напряжение выходного контура, примет вид

$$U_2 = \sqrt{\frac{4\alpha I_9}{\omega A_2} - \frac{16G_{s1}G_{s2}}{\omega^2 A_2^2}}.$$

Очевидно, что при $\alpha I_3 < \frac{4G_{s1}G_{s2}}{\omega A_2}$ никакое внешнее воздействие не приведет к самовозбуждению системы, а при обратном неравенстве [4]

$$\alpha I_{9} > \frac{4G_{s1}G_{s2}}{\omega A_{2}}$$

выполняется условие возбуждения, причем чем больше $\alpha I_{\scriptscriptstyle 3}$, тем больше $U_{\scriptscriptstyle 2}$.

Экспериментальное исследование ТПУЧ проведено на транзисторе КТ640A2 по схеме с общей базой (рис.2).

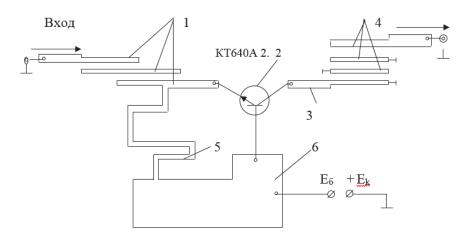


Рис. 2. Схема экспериментального макета ТПУЧ на транзисторе КТ640A2; 1 - фильтр входного сигнала с частотой накачки; 2 - транзистор КТ640A2; 3 - резонатор гармоники — выходного сигнала; 4 - фильтр выходного сигнала с частотой гармоники; 5 - дроссель в цепи питания; 6 - блокировочная емкость в цепи базы

Экспериментально исследованы и сняты амплитудно-частотные характеристики умножителя частоты на два (рис.3а) и энергетические зависимости выходной мощности от напряжения питания (рис.3б) при фиксированных уровнях накачки, результаты которых однозначно совпадают с расчётными.

Экспериментальный макет (рис.4) реализован также на транзисторе, специально разработанном для полосковых радиочастотных конструкций в области дециметровых и сантиметровых длин волн типов 2Т371A, КТ372Б, КТ640A2, КТ918A, КТ634A, 2Т938A-2.

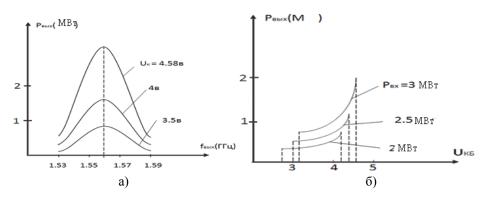


Рис.3. Экспериментально снятые характеристики ТПУЧ: a – частотные и б – энергетические

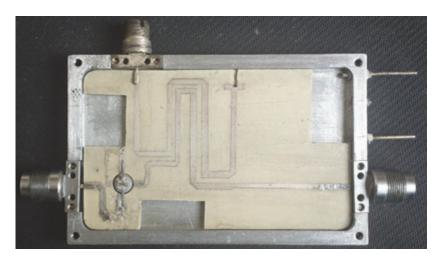


Рис. 4. Экспериментальный макет транзисторного параметрического умножителя *CBY*

Заключение. Реализованы и экспериментально исследованы макеты транзисторных умножителей СВЧ для устройств на полосковых линиях.

Обосновано использование предложенных методов расчета для проектирования преобразующих и передающих устройств сигналов СВЧ в области дециметровых и сантиметровых длин волн при разработке современных радиотехнических средств телекоммуникации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Твердотельные устройства СВЧ в технике связи / **Л.А.** Гасанов и др. -М.: Радио и связь, 1988.- 288с.
- Free non-Reciprocity and isolation based on parametrically modulated coupled-resonator loops / Nicholas A. Estep, Dimitrios L. Jacson Soric and Andrea Alu Magnetic // Nature Physics Macmillan Publishers Limited. - 2014. – P. 1-5.
- 3. **Азоян М.С.** Вывод основных соотношений для полупроводникового параметрического делителя СВЧ //Вестник ГИУА: Информационные технологии, электроника, радиотехника. 2015. N1. C.91-97.
- 4. **Азоян М.С., Айвазян М.Ц.** Делители сигнала терагерцового диапазона // Известия НАН РА и НПУА. Серия Техн. наук. 2020.- Т.73, N3. С. 277- 286.

Национальный политехнический университет Армении. Материал поступил в редакцию 04.04.2021.

Մ.Մ. ԱԶՈՑԱՆ, Դ.Ա. ՂԱԶԱՐՑԱՆ

ՏՐԱՆՋԻՍՏՈՐԱՅԻՆ ՊԱՐԱՄԵՏՐԱԿԱՆ ԳԵՐԲԱՐՁՐ ՀԱՃԱՀՈՒԹՅԱՆ ԲԱԶՄԱՊԱՏԿՉԻ ՓՈՐՁՆԱԿԱՆ ՀԵՏԱԶՈՏՈՒՄԸ

Կատարվել է գերբարձր հաճախությամբ (ԳԲՀ) տրանզիստորային պարամետրիկ ձևափոխիչների փորձարարական հետազոտություն։ ԳԲՀ ազդանշանների ձևափոխիչների հաշվարկի հիմքում ընդունում ենք ոչ գծային տարրի վոլտ-ամպերային (ՎԱԲ) և վոլտ-կու-լոնային (ՎԿԲ) փորձնականորեն ստացված բնութագրերը։ Խնդիրը լուծվում է գրաֆա-վերլուծական եղանակով՝ նշված բնութագրերից որոշակի, անհրաժեշտ քանակով ածանց-լայների որոշմամբ, որոնք համարվում են ելակետային։

Առանցքային բառեր. ենթահարմոնիկ, հաճախության բազմապատկիչ, մղում, ակտիվ, ռեակտիվ, հաղորդականություն։

M.S. AZOYAN, D.A. GHAZARYAN

AN EXPERIMENTAL STUDY OF TRANSISTOR PARAMETRIC MULTIPLIERS OF MICROWAVES

An experimental study of transistor parametric multipliers of microwaves (MW) is performed. For the calculation of microwave converters, experimentally obtained current -voltage (I-V) and current - Coulomb (WSS) characteristics of nonlinear element are taken as a basis. The problem is solved by the graphical-analytical method, by selecting a necessary quantity of derivatives, with a glance of these characteristics, the values of which are original.

Keywords: subharmonic, frequency multipier, pump, active, reactive, conductivity.