АСТРОФИЗИКА

TOM 33

АВГУСТ, 1990

выпуск 1

УДК: 524:520.843

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ ОБЪЕКТОВ ВТОРОГО БЮРАКАНСКОГО ОБЗОРА. ЗВЕЗДНЫЕ ОБЪЕКТЫ. I. ПОЛЯ

 $\alpha = 08^h00^m$, $\delta = +59^{\circ}00'$ и $\alpha = 09^h47^m$, $\delta = +51^{\circ}00'$

Дж. А. СТЕПАНЯН, В. А. ЛИПОВЕЦКИЙ, А. И. ШАПОВАЛОВА, Л. К. ЕРАСТОВА

> Поступная 20 нюня 1990 Принята к печати 12 нюля 1990

Приводятся данные о 54 ввездных объектах из двух полей SBS-обвора с координатами центров $\alpha=08h00m$, $\delta=+59^{\circ}00'$ и $\alpha=09h47m$, $\delta=+51^{\circ}00'$. Открыто 23 QSO, два Liner и одна сейфертовская галактика первого типа. Остальные — белые карлики и горячие субкарлики. Один объект оказался континуальным. Природу двух объектов, SBS 0942+501 и SBS 0954+510, установить не удалось. Приводятся основные параметры вмиссионных лений и другие данные для всех квазизвездных объектов, а также сканы подавляющего большинства QSO. Даны также сканы некоторых типичных белых карликов и субкарликов.

1. Введение. Как уже отмечалось [1—6], в Бюракане начат и продолжается по настоящее время Второй Бюраканский спектральный обзор неба (SBS) с целью поиска и изучения слабых (17^m—19^m·5) внегалактических пекулярных объектов. Опубликованы результаты низкодисперсионной спектроскопии шести полей Второго обзора, содержащих данные о 741 звездном объекте и галактиках.

Дальнейшее более обстоятельное исследование объектов, отобранных в ходе SBS обзора, проводится на 6-м телескопе CAO AH CCCP путем получения щелевых спектров. В ходе спектральных наблюдений, проводимых на БТА, наряду с исследованием галактик с УФ-континуумом Второго обзора, нами были получены щелевые спектры около двух сотен кандидатов в QSO и BSO, а также сейфертовских галактик. Ранее [7] нами были приведены результаты исследований 31 объекта: 21 QSO и 10 сейфертовских галактик, однако количественных данных о них не приводилось.

В настоящей статье мы приводим результаты спектральных исследований 54 звездных объектов из кандидатов в QSO и BSO, расположенных

в двух полях SBS обвора с координатами центров $\alpha = 08^m 00^h$, $\delta = +59^\circ 00'$ и $\alpha = 09^h 47^m$, $\delta = +51^\circ 00'$.

2. Наблюдения и обработка данных. До середины 1984 г. наблюдения проводились в прямом фокусе БТА со спектрографом УАГС в комбинации с ЭОП УМ-92 и УМК-91В, на фотопленке А-500 и А-600 с дисперсиями 90—100 А/мм и спектральным разрешением 5—8 А. Начиная со второго полугодия 1984 г., наблюдения проводились с помощью спектрографа СП-124, установленного в фокусе Насмита БТА, с набором дифракционных решеток, дающих обратную линейную дисперсию около 100 и 200 А/мм. В качестве светоприемной аппаратуры использовался 1024-канальный счетчик фотонов (сканер) [8]. При этом спектральное разрешение составляло около 3—4 А, спектральная ширина одного канала была равна примерно 1.7 А.

Обработка щелевых спектров, полученных с помощью ЭОП, проводилась для части объектов с помощью автоматического микроденситометра АМД САО АН СССР, записи обрабатывались на ЭВМ по программе «СИПРАН», выполнялась редужция, включающая линеаризацию спектра, вычитание фона неба и перевод в интенсивности, для другой части объектов, в основном звезд, записи производились с помощью микроденситометра ИФО-451 БАО в оптических плотностях для определения типа объекта.

Спектральная классификация звезд проведена нами согласно общепринятым критериям [9, 10].

3. Результаты исследований. В таба. 1 приведены сводные данные об изученных объектах: 1—обозначение SBS согласно [1—6], 2—дата наблюдений, 3—исследованный спектральный диапазон в ангстремах, 4—время экспозиции в секундах, 5—эвездная величина согласно [1—6], 6—обзорный тип согласно [1—6], 7—спектральный тип.

В табл. 2 собраны результаты измерений параметров эмиссионных линий, выполненных нами для внегалактических объектов: 1—обозначение SBS; 2—звездная величина согласно [1—6]; 3—абсолютная звездная величина при H=75 км/с Мпк и $q_0=0$, с учетом галактического поглощения $\Delta m=0.25$ cosec $|b^{11}|$; 4— среднее значение красного смещения, определенное по сильным эмиссионным линиям; 5—наблюдаемая длина волны эмиссионной линии волны эмиссионной линии иона и ион, отождествляемый нами; 8—полная ширина эмиссионной линии на уровне непрерывного спектра (FWOI); 9—полная ширина линии на половяне интенсивности (FWHI); 10— наблюдаемое значение эквивалентной ширины эмиссионной линии.

Таблица 1

			Таблица Т				
Обозна чение SBS	Дата	Спектральный двапазон (А)	энцня (с)	m _B	Обзор- ный тип	Спек- тральный тип	
1	2	3	4	5	6	7	
·0743÷605	27.12.84	3500-5700	1500	19 ^m	BSO	sdB:	
0743-;-601	04.01.84	3600—5700	840	17	BSO	DAF	
0744+603	04.01.84	3600—5700	1140	17.5	BSO	DAF	
0745+601 B	11.11.85	3700-5400	624	18	BSO	sdB:	
0746+587	27.12.84	3500—5700	1020	18	BSO	DAF	
0747+611	10.04.81	5400—7500	600	17.5	QSO	QSO	
1111111111	26.11.81	3600—5700	600				
,	27.11.81	5400—7500	660		1000		
0751+591	27.12.84	35005700	1020	18	BSO	DF	
0751+600	07.04.86	3520—5160	1006	17.5	BSO	DAF	
0751+602	04.01.84	3600—5200	1800	18	BSO	DAF	
0753+590	04.01.84	3600—5200	900	17	BSO	DAF	
0757+604	26.12.84	3500—5700	1500	19	QSO	QSO	
0759+609	25.11.81	3400—5100	840	18	QSO	DAB	
4 1 1	26.12.84	3500 —5 2 00	900		1-700		
0800+603 A	26.12.84	3500-5200	1500	18	QSO	DA	
0801-+602	26.12.84	3500-5200	1500	18.5	BSO	DF	
·0801+581	04.01.84	3500-5200	1200	16.5	QSO	QSO	
	08.11.85	3520 5280	1632				
1	08.11.85	47306510	1627				
0804590	25.11.81	3400-5100	960	18.5	QSO	sdB-O:	
	27.11.81	5700 - 7500	900		3113		
1 - 1 - 1 - 1	26,12.84	35005200	1200			11 10 1	
0805+607	26.12.84	3500-5200	1200	18.5	BSO	Liner	
	02.03.89	3700—5500	746			1/9	
	02.03.89	5200—7100	1918				
0933+525	27.11.87	3330—6730	1205	19	BSO	AObe	
0934+495	10.11.85	3430-6000	1768	18.5	BSO	DAO	
0934+504	14.02.86	3430-5270	2351	19.5	BSO	sdB	
0935+501	07.04.86	3520—5160	3277	19.5	QSO	QSO	
0936+518	10.11.85	3680 5440	639	18	QSO	QSO	
	10.11.85	3330-5080	845				
·0936+522	06.04.86	3520—5160	1427	18	QSO	Cont	
1	06.04.86	5000 6640	1261			The L	
0936+514	10,11,85	3320—5080	733	17.5	QSO	QSO	
·0937+503	06,04,86	3500-5160	2288	18.5	QSO	QSO	
, , , , ,	26.04.87	3330-6730	2250				
1	20,02,07	0000 0100				1	

Таблица 1 (продолжение)

1	2	3	4	5	6	7
0937+521	10.02.86	3630-5430	2753	18	QSO	QSO
0,0,,,021	31.03.87	3330-6730	3400		272	
0938+496	14.02.86	3440-5280	1964	19.5	QSO	QSO
	31.03.87	3330-6730	3488			200
	27.11.87	34006800	1819			
0941+502	26.11.87	3400-6800	3089	19.5	QSO	QSO
0942- -501	12.02.86	3530—5350	1229	17.5	QSQ	?
	29.03.87	3360-6760	1795	135	1000	200
0943+511	11.11.85	3320 — 5080	1550	18.5	QSO	QSO
0943+527	13.02.86	34405260	945	19.5	QSO	QSO
0943+510	05.04.86	3500—5160	2752	19.5	QSO	AObe
0943+532	08.03.88	3360-6760	628	18	QSO	DF
0943+498	05.04.86	3500 —5160	508	19.5	QSO	QSO
	31.03.87	3330 6730	3227			7.10
0945+516	12.02.86	3530-5350	740	18.5	BSO	DA
0946+501 A	11.11.85	3320-5080	1511	18	QSO	DO
0946+501 B	11.11.85	33205080	1368	19	QSO	QSO
	29.03.87	3360—6760	2786			
	26.11.87	3330—6730	2599			2.0
0946+514	06.04.86	3500-5160	1415	18	QSO	DAO
0947+496	12.02.86	351 0 —5330	3199	18.5	QSO	QSO
	24.11.87	3430-6800	3700	. 17		
0947+523	12.02.86	3530—5350	1959	18.5	QSO	sdOB
	27.11.87	3330—6730	1234	2		
0947+507	10.02.86	3530—5350	1380	19	QSO	QSO
	25.11.87	34306800	1622			
0949+510	10.02.86	3630—5440	1287	18	QSO	Q30
	08.04.86	3530—5160	2043			1-5
0949+507	13.02.86	3430-5270	2190	19	QSQ	QSO
	25.11.87	3430-6800	1180			-
0950+521	10.02.86	3530—5360	1170	18	QSO	sdB
	24.11.87	34306800	1183			
0951-1-518	10.11.85	3320 - 5080	649	18	BSO	Liner
	10.11.85	4730—6510	684			
0952+516	14.02.86	3400 - 5270	1567	19	QSO	QSO
	25.11.87	34306800	1268	1		
0952+505	09.03.88	34306800	451	18	BSO	DA
0094 495	27.11.87	3300-6700	753	18.5	QSO	QSO.
0954-1-504	26.11.87	3300-6700	913	19	QSO	QSO

Таблица 1 (окончание)

2	3	4	5	6	7	
09.03.87	3430—6800	1325	19	BSO	QSO	
27.11.87	3300-6700	1388	18	BSO	?	
26.11.87	3300 6700	1250	19.5	QSO	QSO	
10.02.86	3530 —5350	1164	17	BSO	Syl	
10.02.86	4800-6500	780				
27.11.87	3300-6700	860	18.5	BSO	DA	
	09.03.87 27.11.87 26.11.87 10.02.86 10.02.86	09.03.87 3430—6890 27.11.87 3300—6700 26.11.87 3300—6700 10.02.86 3530—5350 10.02.86 4800—6500	09.03.87 3430-6800 1325 27.11.87 3300-6700 1388 26.11.87 3300-6700 1250 10.02.86 3530-5350 1164 10.02.86 4800-6500 780	09.03.87 3430-6800 1325 19 27.11.87 3300-6700 1388 18 26.11.87 3300-6700 1250 19.5 10.02.86 3530-5350 1164 17 10.02.86 4800-6500 780	09.03.87 3430-6800 1325 19 BSO 27.11.87 3300-6700 1388 18 BSO 26.11.87 3300-6700 1250 19.5 QSO 10.02.86 3530-5350 1164 17 BSO 10.02.86 4800-6500 780 80	

Таблица 2

Обозна- чение SBS	m_B	M_B	2 em	Amasa.	λο	Отождествае- нне	FWOI	FWHM	EW HAGA
1	2	3	4	5	6	7	8	9	10
0747+611	17.5	-27.9	2.492	3618	1034	OVI	7-	- 18	7.7
				4247	1216	La)		5400)	
				4340	1240	NV J	20000	- 1	280
				4586	1313	Oı	3400	2300	6
			- 2	4655	1335	CII	3400	2300	5
				4690	1400	SiIV + [OIV]	5700	3300	20
			1	5405	1549	CIV	11000:	6000:	140:
-				5814	1663	OIII]	3500:	2000:	10
				6663	1909	Clilj	9000:	5000:	22:
0757+604	19	-25.7	1.776	3880	1400	SilV + [OIV]	7000:	4000:	12
				4300	1549	CIV	9400	350J	70
				4610	1663	OIII	1600:	1000:	6:
		15.00		5300	1909	CIII]	6500	3800	40
0801+581	16.5	-25.2	0.440	4030	2798	MglI	8700	3300	30
0935+501	19.5	-24.6	1.321	3595	1549	CIV	8300	30 00	140
		- 4		3710:	1602	[NeIV]	2300	1200	10
17.13				4065	1750	[NIII]	2400	1100	12
				4430	1909	CIII]	6800	2500	40
0936+518	18	-24.3	0.608:	4500	2798	MgII	4000	1500	20
0936+514	17.5	-27.3	1.936	3570	1216	L_{α}		_	220
- 3				3640	1240	NV	22000	_	50:
				4110	1400	SilV + [OIV]	7300	4500	30
				4545	1549	CIV	12000	6000	50
0937+503	18.5	-26.2	1.878	3500	1216	La)	24	-1	200
			11.0	3570	1240	NV J	19000:]	280:
	1			3850	1335	SiII	3500	2000	18
			-	4950	1400	SilV + [OIV]	8000	6000:	50

Таблица 2 (продолжение)

1	2	3 4	5	6	7	8	9	10
-			4460	1549	CIV	10000	5000	80
		-2	4675	1640	HeII	_		_
		-10.7	4790	1663	OIII			_
			5050	1750	[NIII]		1/4	-
4		1000	5490	1909	CIUJ	11-1	-	_
0937+521	18	-25.61.105	3670:	1750	[NIII]	200	4	_
0501 (000			4020	1909	CIII]	12000	6000	60
			5220	2470	[OII]	3500	2000	15
			5890	2798	MgII	9800	4500	60
0938- -496	19.5	-24.3 1.201	3660	1663	OIII]	_	-	_
	3	-	4200	1909	CIII	12000	6000	80
			6160;	2798	MgII	5800	3000	60
0941+502	19.5	-21.80.394	3900	2798	MgIl	6700	400υ	80
0943+511	18.5	-23.40.505	3648:	2424	[NeIV]			_
	81	-	4215	2798	MgII	7000	2900	45
		0.00	4705	3133	[OIII]	5000	3000	25
0943+527	19.5	-24.9 1.583	3995	1549	CIV	10000	4000	110
		33	4520	1750	[NIII]	1-1	_	_
		F	4940	1909	CIII	7000	4000	60:
0943+498	19.5	-25.2 1.810	3930	1400	SilV + [OIV]	9600	5000	45-
		- 1	4350	1549	CIV	11500	5500	75
			4670	1663	OUIJ	_	11 -	-
		V 1999	4920	1750	[NIII]	_	10 - 15	
1 100		Section 110	5365	1909	CIII]	9500:	5000:	60:
0946+501 B	19	-24.81.223	3445:	1549	CIV		_	_
			4245	1909	CIII]	12000	5300	50
	1 5		6210:	2798	MgII	-	-	-
0947-1496	18.5	-25.51.342	3630	1549	CIV	11500	4000	60
		100	3840	1640	Holl		_	_
		2.1	4090	1750	[NIII]		_	-
			4470	1909	CIII]	12500	6700	50
0947-1-507	19	26.02.130	3810	1216	La)	200	. "	1
12.5			3880	1240	NV }	26500	16000	300
			4370	1400	SilV + [OIV]	15000	11500	40
+			4850	1549	CIV	12000	6300	60
11 25 3	- 115	-00	5480	1750	[NIII]	1800	1000	6
175 1 1 1			5970	1509	CIII]	11000	6400	95
0949510	18	-26.3 1.546	3945	1549	CIV	12500	6500	40
12/3/12		7 - 1,-20	4460	1750	[NIII]	-	ş	
274 17 17		120						7

Таблица 2 (окончание)

					-	- company of the contraction			
1	2	3	4	5	6	7	8	9	10
A 20 TO 10			9-1	4855	1909	CIII	5000:	2500:	15:
0949+507	19	-22.4	0.408:	3945	2798	MgII	9500	4000	45
			27	6125	4340	H,	6500	3500	50
		1		5855	4861	H _B	>7000	<3500	<90
0952+516	19	-24.8	1.184	4170	1909	CIII	21000	10000	80
				6110	2798	MgII	6900	2500	80
0954+495	18.5	-26.0	1.684	4160	1549	CIV	9800	3500	160
		5		4400	1640	Hell	-	-	_
				4695	1750	[NIII]	-	_	_
				5120	1909	CIII]	10200	6300	80
0954+502	19	-25.0	1.316	3590	1549	CIV	8500	4000	100
				4420	1909	CIIII	10000	5800	40
			•	6480	2798	MgII	_	-	-
0954+504	19	-24.1	0.882	3595	1909	CIII]	9700	4000	60;
		1.6		5265	2798	MgII	6600	3000	50
0954+503	19.5	-24.9	1.589	4010	1549	CIV	15000	7000	160
			1115	4245	1640	HeII	6600	3000	45
1111				4945	1909	CIII]	5700	400C	45
								100	

Краткие вамечания к отдельным объектам табл. 1 и 2

- 0747+611 Объект независимо наблюдался другими [11]. Ими отождествлены также две системы абсорбционных линий с $z_{abs} = 2.210$ (9 линий) и $z_{abs} = 1.986$ (7 линий).
- 0757+604 Спектр объекта обработан на автоматическом микроденситометре САО АН СССР.
- 0936+514 В спектре наблюдаются многочисленные абсорбционные линии, а также L_{α} лес. Эмиссионная линия L_{α} состоит из узкого и широкого компонентов.
- 0937+521 Эмиссионная линия С III] λ 1909 разделена мощной абсорбционной линией посередине.
- 0941+502 Возможен также вариант отождествления $z_{em}=1.518$.
- 0942+501 Спектр объекта получен в области λλ 3500—6700. В нем наблюдается сильная эмиссионная линия при λ 4861 с полной шириной на уровне непрерывного спектра более 1500 км/с. Эмиссионная линия имеет сложную структуру, на коротковолновом крыле которой наблюдаются сильные и широкие абсорбционные линии. Как будто намечается также эмиссионная линия на λ 3700. Возможно, это несмещенные ли-

нии [O II] λ 3727 и H_{β} . В таком случае неясно отсутствие других линий и огромная ширина линии при λ 4861. Если объект считать внегалактическим, то возможен вариант отождествления z=0.737 (Mg II λ 2798), при этом линии на λ 3700 не отождествляется.

- 0943+498 В спектре наблюдаются многочисленные абсорбционные линии.
- 0946+501—B—Возможен также вариант отождествления $z_{em}=0.553$.
- 0947+496 Эмиссионная линия С III] λ 1909 имеет абсорбцию посередине.
- 0947+507 Эмиссионная линия L_a λ 1216 разрезана сильной абсорбционной линией с почти нулевой интенсивностью. Наблюдается также L_a лес. Возможно, есть и Ne IV λ 1602.
- 0954+495 Объект входит в каталог QSO [12]. Приведенный в работе [13] спектр этого объекта и красное смещение $z_{em} = 1.687$ хорошо сходятся с нашим.
- 0954+510 Спектр объекта абсолютно идентичен спектру SBS 0942-+501. Как и в случае с SBS 0942+501, нам не удается отождествить линии.
- 0954+503 По интенсивности линия Не II λ 1640 равна С III] λ 1909.

Средние значения красных смещений, приведенных в табл. 2, определены по всем сильным вмиссионным линиям, наблюдаемым в спектре данного объекта. Центры тяжестей сильных широких эмиссионных линий нами определяются с точностью не хуже 5 А. Среднеквадратичная ошибка определения значений красных смещений по сильным эмиссионным линиям равна ± 0.0025.

Ошибки определения полной ширины эмиссионной линии на уровне непрерывного спектра (FWOI) и полной ширины эмиссионной линии на половине интенсивности (максимума) (FWHM) в зависимости от применяемого нами метода сглаживания и уровня проведения непрерывного спектра изменяются в широких пределах: ± 1000 км/с для FWOI и ± 300 км/с для FWHM.

Эквивалентная ширина вмиссионных линий также в зависимости от вышеприведенных условий определяется нами с точностью около 30%.

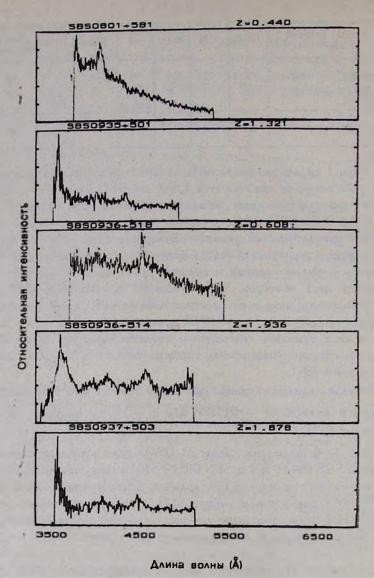
Во всех случаях, при наличии нескольких сканов (спектров) для одного и того же объекта нами приводятся средние значения для указанных выше величин. Двоеточие означает неуверенное определение отмеченного параметра.

В табл. 3 приведено распределение изученных в двух полях SBS звездных объектов по типам.

Таблица 3

Коорд. центров SBS-полей	QSO	Gal	WD	sd	Cont	?	Всего объекто:
08 ^h 00 ^m + 59°00′	3	1	10	3	12 -	_	17
09 ^h 47 ^m + 51°00′	20	2	7,	' '5	1	2	37
Bcero	23	3	17	8	1	2	54

Из табл. 1 видно, что около 80% кандидатов в QSO из оригинальных списков действительно оказываются QSO, из BSO лишь около 20% оказываются внегалактическими объектами, причем два объекта — SBS 0805 + 607 и SBS 0951+518 оказались галактиками, по-видимому, типа Liner, один—сейфертовокой галактикой первого типа. Более подробные данные об этих и подобных объектах будут опубликованы позднее. Остальные объекты — белые карлики и горячие субкарлики разных типов.


Природу двух объектов, SBS 0942+501 и SBS 0954+510, нам не удалось установить, хотя в их спектрах наблюдается очень сильная и широкая эмиссионная линия при λ 4861 и возможная линия на λ 3700. Обращает на себя внимание совершенное сходство спектров обоих объектов вплоть до идентичного повторения контура сильной и широкой эмиссионной линии при λ 4861.

Диапазон красных смещений QSO $0.4 < z_{em} < 2.5$, светимости заключены в интервале $-21^m 8 < M_B < -27^m 9$, видимые величины $16^m 5 < m_B < 19^m 5$.

На рис. 1—6 приведены сканы 21 QSO, двух неотождествленных нами объектов SBS 0942+501 и SBS 0954+510, и семи типичных вырожденных эвезд—белых жарликов и субкарликов. Регистрограмма спектра QSO SBS 0747+611 приведена в работе [11]. Регистрограмма спектра QSO SBS 0757+604 будет приведена повднее. Краткие описания спектров типичных белых жарликов и субкарликов даны в конце статьи.

4. Заключение. Из изученных нами 54 звездных объектов из двух полей SBS-обзора половина оказалась внегалактическими объектами, остальные—вырожденными звездами—белыми карликами и горячими субкарликами различных типов. Один объект оказался континуальным. Природу двух объектов — SBS 0942+501 и SBS 0954+510 — установить не удалось.

Открыто 23 QSO, два Liner и одна сейфертовская галажтика первого тыпа.

Рвс. 1. Спектры квазаров Второго Бюраканского спектрального обзора неба, полученные с помощью TV-сканера 6-м телескопа.

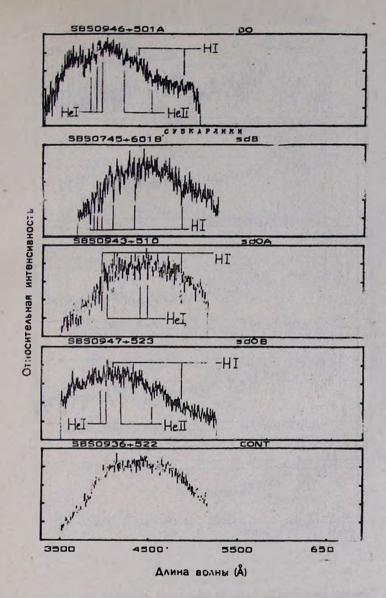
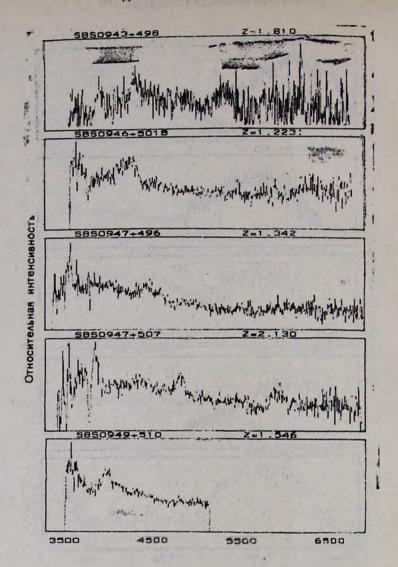



Рис. 2. Спектры квазаров Второго Бюраканского спектрального обзора неба, полученные с помощью TV-сканера 6-м телескопа.

Алина волны (А)

Рис. 3. Спектры квазаров Второго Бюраканского спектрального обзора неба, полученые с помощью TV-сканера 6-м телескопа.

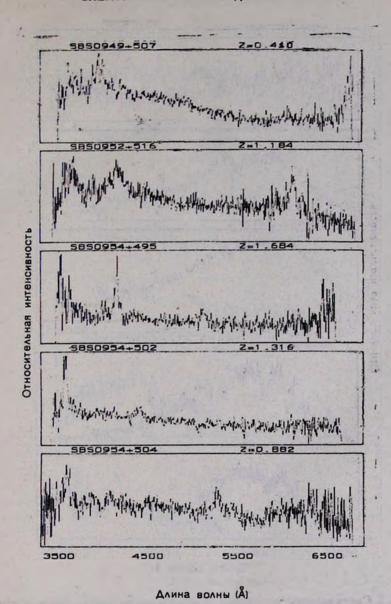


Рис. 4. Спектры квазаров Второго Бюраканского спектрального обзора неба, полученные с помощью TV-сканера 6-м телескопа.

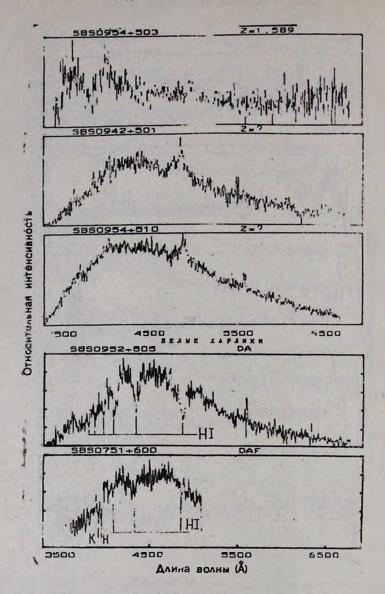
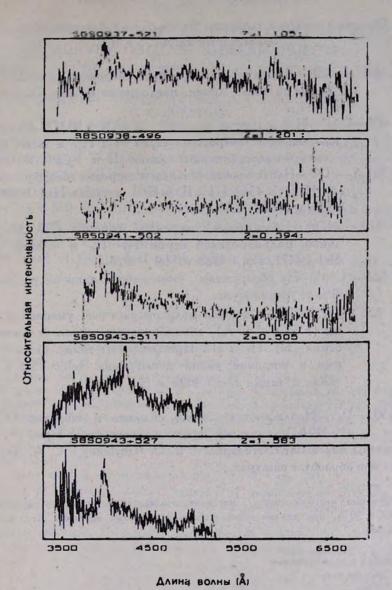



Рис. 5. Сжаны квазаров и типичных белых карликов Второго Бюраканского спектрального обзора неба, полученные с помощью TV-сканера 6-м телескопа.

Рас. 6. Спектры тыпичных субкарликов Второго Бюраканского спектрального обзора неба, полученные с помощью TV-сканера 6-м телескопа.

Описания спектров типичных белых карликов и субкарликов, приведенных на рис. 5 и 6

- 0745 + 601 B—sdB—B спектре наблюдаются умеренной ширины (FWOI \ll 40 A), сильные линии поглощения бальмеровской серии $H_{\beta}-H_{11}$.
- 0751+600—DAF—Наблюдаются широкие (FWOI \sim 50A°) абсорбционные линии бальмеровской серии $H_{\mathfrak{g}}$, H_{γ} , а также широкие и сильные абсорбционные линии H и KCa II и G-полоса.
- 0946+501 A— DO—Наблюдаются сильные и широкие абсорбционные линии He II λ 4542 и He II λ 4200, а также He I λ4009, He I λ 3889 и He I λ 3820.
- 0943 + 510 sdOA-Наблюдается умеренной ширины (FWOI \leq 40 A) линии Бальмеровской серии H_{β} H_{ϵ} и слабые линии HeI λ 4471, HeI λ 4388 и HeI λ 4026.
- 0936+522— Cont.—Не обнаружены какие-либо линии на уровне более 10% от уровня шума.
- 0947 + 523 sdOB*-Наблюдаются малоконтрастные умеренной ширины (FWOI < 40 A) абсорбционные линии бальмеровской серии H_β, H_γ и H_δ. Присутствуют также малоконтрастные и широкие линии поглощения HeII λ 4542 и HeII λ 4200, а также HeI λ 4026 и HeI λ 4009.
- 0952+505-DA-Наблюдаются очень сильные и широкие (FWOI> > 100A°) линии поглощения бальмеровской серии H_{β} - H_{η} . Авторы выражают благодарность В. О. Чавушяну и С. А. Акопян за

помощь при обработке спектров.

Бюраканская астрофизическая обсерватория

Специальная астрофизическая обсерватория АН СССР

^{*} Отметим, что субкарлики с малоконтрастными абсорбционными линиями, имеющие FWOI 30 A, при данном спектральном разрушении выглядят как континуальные объекты.

SPECTRAL INVESTIGATIONS OF THE SECOND BYURAKAN SKY SURVEY OBJECTS. STELLAR OBJECTS.

I. Fields $\alpha = 08^{h}00^{m}$, $\delta = +59^{\circ}00'$ and $\alpha = 09^{h}47^{m}$, $\delta = +51^{\circ}00'$

J. A. STEPANIAN, V. A. LIPOVETSKY, A. I. SHAPOVALOVA, L. K. ERASTOVA

The data for 54 stellar objects from the Second Byurakan Survey (SBS) are presented. 23 QSO, two Liners and one Sy1 are found. The remainder objects are white dwarfs and hot subdwarfs. One object turned out as a continual one. The nature of two objects SBS 0942 + 501 and SBS 0954 + 510 has not been established. The main parameters of emission lines and the other data for all QSO's and the scans of the main part of QSO's are presented.

Some scans of the typical white dwarfs and subdwarfs are also given.

ЛИТЕРАТУРА

- 1. Б. Е. Маркарян, Дж. А. Степанян, Аспрофизика, 19, 639, 1983.
- 2. Б. Е. Маркарян, Дж. А. Степанян, Аспрофизика, 20, 21, 1984.
- 3. Б. Е. Маркарян, Дж. А. Степанян, Астрофизика, 20, 513, 1984.
- 4. Б. Е. Маркарян, Дж. А. Степанян, Л. К. Ерастова, Астрофизика, 23, 439, 1985.
- 5. Б. Е. Маркарян, Дж. А. Степанян, Л. К. Ерастова, Астрофизика, 25, 345, 1986.
- Дж. А. Степанян, В. А. Липовецкий, Л. К. Ерастова, Астрофизыка, 29, 247, 1988.
- 7. Б. Е. Маркарян, В. А. Липовецкий, Дж. А. Степанян, Астрофизыка, 19, 29, 1983.
- 8. С. В. Драбек, И. М. Копылов, Н. Н. Сомов, Т. А. Сомова, Изв. Спец. аспрофиз. обсерв., 22, 64, 1986.
- 9. Дж. А. Гринстейн, в км. «Белые карлики», Мир. М., 1975, стр. 103.
- 10. R. F. Green, M. Schmidt, J. Liebert, Astrophys. J. Suppl. Ser., 61, 305, 1986.
- 11. V. L. Afanasjev, I. D. Karachentsev, V. A. Lipovetsky, H. Lorenz, D. Stoll, Astron. Nachr., 300, 31, 1979,
- 12. A. Hewitt, G. Burbidge, Astrophys. J. Suppl. Ser., 63, 1, 1987.
- G. A. Reichert, K. O. Mason, J. R. Thorstensen, S. Bowyer, Asrophys. J., 260.
 437, 1982.