АСТРОФИЗИКА

TOM 26

ФЕВРАЛЬ, 1987

ВЫПУСК 1

УДК: 52-36

АНАЛИЗ ХИМИЧЕСКОГО СОСТАВА АТМОСФЕРЫ в Vir

В. М. ДОБРИЧЕВ. Т. А. РЯБЧИКОВА, Д. В. РАЙКОВА Поступила 8 января 1986 Принята к печати 25 октября 1986

По спектральным наблюдениям с дисперсией 4.2 А/мм проведен анализ химического состава атмосферы звезды \emptyset Vir (HD 114330, HR 4963) методом моделей атмосфер. Выбрана модель с параметрами $T_{sec} = 9500$ К и Ig g = 3.6. Получена микротурбулентиая скорость $\xi_t = 1.5$ км/с. Установлено повышенное содержание тяжелых элементов Sr. Y. Zr и Ва. что позволяет отнести \emptyset Vir к горячим Ат-звездам, но с нормальным содержанием Са и Sc. Кроме того Ti и V показывают также повышенное содержание.

1. Введение. Эвезда 0 Vir (HD 114330, HR 4963) спектрального класса A IV имеет очень узкие линии без заметных аномалий интенсивности. В ее спектре разделяются многие линии, которые блендированы в спектрах таких звезд, как а Lyr, т 'Gem и а CMa. Поэтому она была использована аля определения эффективных длин волн эвездных спектральных линий, несбходимых при поисках дифференциальных смещений линий в спектрах ранних сверхгигантов [1]. θ Vir была рекомендована и как фотометрический стандарт [2]. В системе Стремгрена она имеет следующие цвстовые индексы: b - y = 0.007, $\dot{m}_1 = 0.142$, $c_1 = 1.148$, $\beta = 2.838$ [3]. Поскольку θ Vir является одной из немногих звезд главной последовательности с узкими линиями вблизи спектрального класса A0, где расположено подавляющее большинство пекулярных A-звезд, ее удобно использовать и как стандарт химического ссстава A-звезд.

Содержание элементов в атмосфере 0 Vir определялось Конти и Стромом [4]. Однако они использовали в фотографической области спектра всего лишь 120 линий, а, кроме того, с тех пор были уточнены системы сил осцилляторов для многих элементов, в частности для железа. Добричев и Райкова [5] отождествили и измерили около 500 линий в спектральном диапасоне 2800—4800 А. Нижний предел измерсиных эквивалентных ширии в спектре 0 Vir составляет ~ 10 mA, он определяется фотографическим шумом и неопределенностью проведения континуума. По этим даиным в настоящей работе проведен анализ химического состава атмосферы θ Vir, с использованием более современных моделей атмосфер Куруча и др. [6] и более точных значений сил осцилляторов, чем в работе [4].

2. Наблюдения и обработка. По программе Добричева поиска и исслелования звезд с узкими спектральными линиями куде-спектрографом 2-м телескопа Национальной астрономической обсерватории (Рожен) Болгарской Академии наук было получено пять спектрограмм θ Vir в фотографической области λ 3700—4800 A на пластинках IIa-O. Спектры расширены до 1 мм. Данные о наблюдениях приведены в табл. 1. Измерение эквивалентных ширин проводилось методом Добричева [7].

Камера и номер спектра	Дата (UT)	- Днсперсия (А/мм)	
3 n -433	17.01.1982	4.2	
2x-990	12.02.1982	9	
3x-477	30.01.1983	4.2	
3x-487	30.04.1983	4.2	
3x-488	3.05.1983	4.2	

3. Выбор модели атмосферы и аналив химического состава. Эффективная температура θ Vir определялась по индексам Стремгрена с калибровкой Рълея и Куруча [8] и по значению D = 0.58 бальмеровского скачка, оцененного по спектрам. Все вти критерии указывают на $T_{\rm sec} = 9500$ К. Испольвуя эту температуру, путем сравнения теоретического и наблюдаемого профилей H_i мы определили эффективное ускорение силы тяжести lg g = 3.6. На рис. 1 приведено сравнение наблюдаемого и наилучшим образом соответствующего ему теоретического профиля H₁ из работы [6].

Полученное значение эффективной температуры в Vir согласуется со спектральным классом A IV и с небольшой интенсивностью наблюдаемых линий He I, а значение эффективного ускорения силы тяжести согласуется с номером последней наблюдаемой линии бальмеровской серия H₂₀.

Поскольку линии в спектре ℓ Vir очень узкие, то для анализа химического состава было использовано максимально возможное количество линий в фотографическом диапазоне, для которых имелись достаточно надежные значения сил осцилляторов. Ссылки на источники lg (gf) приведены в табл. 2.

Ион	$\log N_{_{2\Lambda}}/N_H$	g	Число ляний	Ссылка на lg(gf)	1g N _{ва} /N _Н на Солнце	lg N _{BA.} /N _H B B-SBOSAAX
MgI	-4.42	<u>+0.18</u>	4	9, 10	-4.42	-4.13
Mg II	-4.48	0.08	7	9		-4.26
Ali	-5.79		2	9	-5.53	5.87
Si II	-4.27	0.09	5	9	-4.45	-4.45
Ca I	-5.40	0.10	8	9	-5.64	10000
Call	-5.72	and the state of the	1	9		1000
Se II	-8.93	0.10	8	11	-8.90	-9.17
Till	-6.52	0.13	41	11; 12	-6.98	-7.04
VII	-7.23	0.12	18	13	-8.00	
Crl	-6.23	0.05	3	13	-6.93	-5.91
Cr II	-6.14	0.13	27	12, 14, 15		-5.82
Mn I	-6.76	0.06	4	16	-6.55	33 11
Mn II	6.72	0.19	6	14, 12a		1.2. 1
Fel	-4.34 .	0.07	39	17, 18b, 19, 20, 21	-4.93	-4.32
Fell	-4.37	0.08	26	1Sc, 22	a share a	-4.44
Nil	5.35	0.04	4	23	-5.75	
Ni II	-5.58	0.07	6	14d	all and	-6.74
Sr II	- 8.16	0.12	4	24	-9.10	9.04
ŸП	-8.98	0.05	6	25 .	-9.76	12
Zr II	-8.55	9.10	18	26	-9.44 ·	
Ball	-8.94	-	2	27	-9.87	-
1.1		1000			and the second second	

а — значения lg (gf) приведены к системе Уорнера [14].

b — значения lg (gf) приведены к оксфордской системе.

с — значения lg (gf) приведены к системе Мойти [22].

d — нуль-пуякт системы lg (gi) Уорнера [14] смещен на — 0.90.

Таблица 2

Содержание элементов рассчитывалось методом моделей атмосфер с использованием моделей Куруча и др. [6]. По программе, составленной в Астрономическом совете АН СССР Н. Е. Пискуновым, для выбранной модели атмосферы в Vir и набора значений lg N_{эл.}/N_H и микротурбулентной скорости & были рассчитаны теоретические интенсивности (теоретические кривые роста) некоторых спектральных линий, которые являются типичными для группы мультиплетов с близкими значениями энергии возбуждения нижнего уровня. Для остальных линий из этой группы содержание элемента определялось по измеренным эквивалентным ширинам и рассчитанным теоретическим кривым роста. Во всех расчетах, за исключением линий Mg II, Ca II, Si II и Sr II, принималось значение постоянной затухания $\gamma = 10 \gamma_{-1}$ для переходов с возбужденных уровней и $\gamma = \gamma_{-1}$ для переходов с основного уровня. Для Mg II, Ca II, Si II и Sr II расчеты теоретических интенсивностей линий проводились для каждого мультиплета отдельно с постоянными затухания, приведенными в работе [28]. Параметр микротурбулентной скорости : выбирался по линиям Fel обычным требованием, чтобы содержание железа не зависело от интенсивности линин. Для 6 Vir было получено значение 4 = 1.5 км/с.

Среднее по всем линиям содержание 15 элементов в атмосфере θ Vir представлено в табл. 2. Среднеквадратическое отклонение σ указывает на хорошую внутреннюю сходимость полученных результатов. Согласне содержания железа, полученного отдельно по линиям Fe I и Fe II, для которых в настоящее время имеется самая лучшая система сил осцилляторов, указывает на правильный выбор модели атмосферы. Расхождение содержаний Cr и Ni по отдельным ионам связано, главным образом, с неточным значением нуль-пункта системы сил осцилляторов Уорнера [14] для однократно ионизованных элементов. Чтобы привести в согласие содержание Cr и Ni в θ Vir по нашим данным, надо ввести сдвиг нуль-пункта системы сил осцилляторов [14] для Cr II на + 0.24 и для Ni II на - 1.14. Однако вти величины можно рассматривать только как предварительные, поскольку при данной $T_{\bullet \bullet \bullet}$ для определения точного содержания Cr и Ni по линиям нейтральных атомов в фотографической области спектра наблюдается очень мало линий.

4. Обсуждение. Для сравнения в табл. 2 приведено содержание исследованных элементов на Солнце из работы [29], и в В-звездах из работы [30]. Видно, что из элементов группы железа Ті и V показывают повышенное содержание по сравнению с солнечным. Из остальных только тяжелые элементы Sr, Y, Zr и Ва имеют избыток. Полученный небольшой дефицит алюминия обусловлен, скорее всего, использованием для анализа содержания двух резонансных линий Al I, одна из которых находится в крыле водородной линии H.. Из-за повышенного содержания тяжелых элементов в Yir можно рассматривать как горячую Am-звезду, в которой, однако, содержание Ca и Sc нормально. C другой стороны, содержание тяжелых элементов повышено и в пекулярных A-звездах. Таким образом, мы приходим к известному заключению, что существует непрерывный переход от Am к Ap звездам [31— 33], и если феномен Am—Ap звезда, согласно теории диффузии, связан с медленным вращением, остается открытой проблема существования нормальных A-звезд — быстрых ротаторов, наблюдаемых почти со стороны полюса. При случайной ориентации осей вращения этого следует ожидать. Впрочем, необходимо больше наблюдений в поисках таких звезд.

Секция астрономии с Национальной астрономической обсерваторией Болгарской Академии науж Астрономический совет АН СССР

MODEL ATMOSPHERE ABUNDANCE ANALYSIS OF 9 Vir

V. M. DOBRICHEV, T. A RIABCHIKOVA. D. V. RAIKOVA

Model atmosphere analysis of the star θ Vir (HD 114330, HR 4963) have been carried out using spectra with the dispersion of 4.2 A/mm. The parameters of adopted model are the followings: $T_{e} = 9500$ K, $\lg g = 3.6$ and microturbulent velocity $z_{e} = 1.5$ km/s. The obtained overabundance of heavy elements such as Sr, Y, Zr and Ba permits us to classify θ Vir as Am star with normal abundance of Ca and Sc. The elements Ti and V are also overabundant in atmosphere of θ Vir in comparison with normal solar abundance of other iron-peak elements.

• ЛИТЕРАТУРА

- 1. В. М. Добричев, Е. Л. Ченцов, Э. У. Шхагошева, Астрофизика, исслед. (Изв. САО), в печати.
- 2. B. J. Taylor, Astrophys. J. Suppl. Ser., 54, 259, 1984..
- 3. N. R. Stokes, Mon. Notic. Roy. Astron. Soc., 160, 155, 1972.
- 4. P. S. Conti, S. E. Strom, Astrophys. J., 154, 975, 1968.
- 5. В. Добричев, Д. Райкова, Астрофиз. исслед. (Болг. АН), в печати.
- 6. R. L. Kurucz, E. Peytremann, E. H. Avrett, Blanketed Model Atmospheres for Early-Type Stars, Smithsonian Inst. Press, Washington, 1974.
- 7. В. М. Добричев, Изв. Секцие астрон. БАН, 4, 47, 1970.
- 8. L. J. Relyea, R. L. Kurucz, Astrophys. J. Suppl. Ser., 37, 45, 1978.
- W. L. Wiese, M. W. Smith, B. M. Miles, Atomic Transition Probabilities, vol. II, NSRDS-NBS, 22, USA, 1969.
- 10. A. R. Schafer, Astrophys. J., 163, 411, 1971.

- 11. W. L. Wiese, J. R. Fuhr, J. Phys. Chem. Ref. Data, 4, 263, 1975.
- 12. R. L. Kurucz, E. Peytremann, SAO Spec. Rep., No. 362, 1975.
- S. M. Younger, J. R. Fuhr, G. A. Martin, W. L. Wiese, J. Phys. Chem. Ref. Data, 7, 495, 1978.
- 14. B. Warner, Mem. Roy. Astron. Soc., 70, 165, 1967.
- 15. H. G. Groth, Z. Astrophys., 51, 231, 1961.
- 16. D. E. Blackwell, B. S. Collins, Mon. Notic. Roy. Astron. Soc., 157, 255, 1972.
- D. E. Blackwell, P. A. Ibbetson, A. D. Petford, M. J. Shallis, Mon. Notic. Roy. Astron. Soc., 186, 63, 1979.
- 18. gl-каталог Астрономического совета АН СССР (не опубликован).
- D. E. Blackwell, A. D. Petford, M. J. Shallis, Mon. Notic. Roy. Astron. Soc., 186, 657, 1979.
- D. E. Blackwell, A. D. Petford, M. J. Shallis, G. J. Simmons, Mon. Notic. Roy. Astron. Soc., 191, 445, 1980.
- D. E. Blackwell, A. D. Petford, M. J. Shallis, G. J. Simmons, Mon. Notic. Roy. Astron. Soc., 199, 43, 1982.
- 22. J. Motty, Astron. and Astrophys. Suppl. Ser., 52, 37, 1983.
- J. R. Fuhr, G. A. Martin, W. L. Wiese, S. M. Younger, J. Phys. Chem. Ref. Data, 10, 305, 1981.
- 24. B. Warner, Mon. Notic. Roy. Astron. Soc., 139, 115, 1968.
- P. Hannaford, R. M. Lowe, N. Grevesse, E. Bièmont, W. Whaling, Astrophys. J., 261, 736, 1982.
- N. Grevesse, E. Bidmont, P. Hannaford, R. M. Lowe, Upper Main Sequence Chemically Peculiar Stars, 23-rd Liège Astrophys. Colloq. No. 211, 1981.
- 27. W. L. Wiese, G. A. Martin, NSRDS-NBS 68, part 2 (US Government Printing Office; Washington, DC), 1980.
- 28. Д. А. Птицын, Т. А. Рябчикова, Астрон. к., 63, 527, 1986.
- 29. N. Grevesse, Phys. Scr., T8, 49, 1984.
- 30. S. J. Adelman, Mon. Notic. Roy. Astron. Soc., 206, 637, 1984.
- 31. P. S. Conti, Astrophys. J., 142, 1954, 1965.
- 32. D. J. Stickland, J. A. J. Whelan, Mon. Notic. Roy. Astron. Soc., 155, 11, 1972. 33. M. A. Smith, Astrophys. I., 189, 101, 1974.