АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР АСТРОФИЗИКА

TOM 17

НОЯБРЬ, 1981

ВЫПУСК 4

УДК 523.855

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ОДНОГО КВАЗИЗВЕЗДНОГО ОБЪЕКТА

М. А. КАЗАРЯН, Э. Е. ХАЧИКЯН

Поступила 16 марта 1981

Приведены результаты спектрофотометрического исследования квазизвездного объекта N_2 102 из списка галактик с ультрафиолетовым избытком [1]. Построены контуры и определены эквивалентные ширины и относительные интенсивности эмиссионных линий. Делается вывод о том, что некоторые квазизвездные объекты и галактики Sy 1 по своим физическим характеристикам представляются объектами одного класса.

1. Введение. Исследуемый объект входит в список галактик с ультрафиолетовым избытком [1] под номером 102. До опубликования списка [1] он уже был известен как объект под названием «Казарян 102» [2]. Предварительное исследование показало, что он является квазизвездным объектом с небольшим красным смещением (z=0.136) и светимостью ($M_{\rm V}=-22^{\rm m}$ 9, при H=75 км/с Мпс), обладающим характеристиками галактик типа Sy 1 [3]. Дальнейшие исследования, проведенные на основании более обширного материала (см., например, [2]), показали, что некоторые квазары и Sy 1 по многим физическим характеристикам похожи друг на друга. Поэтому особый интерес представляет обнаружение и подробное исследование квазизвездных объектов с небольшим красным смещением и с характеристиками сейфертовских галактик первого типа, подобных Маркарян 205 [4—6] и объекту № 102. Такие работы могут пролить свет на природу квазаров вообще и выяснить, действительно ли часть из них является далекими сейфертовскими галактиками первого типа.

В настоящей работе приведены результаты спектрофотометрического исследования объекта № 102, некоторые данные о котором были опубликованы ранее в [1—3].

2. Наблюдательный материал. Спектры объекта № 102 были получены на 90", 107" и 200" телескопах обсерваторий Стюард, Мак Дональд и Хейл (США). Сведения об этих снимках приведены в табл. 1, в столбцал которой помещены: дата наблюдения, номер пластинки, телескоп, сорт эмульсии, дисперсия спектрографа и спектральный диапазон наблюдений.

При всех наблюдениях ширина щели спектрографа была порядка 1", за исключением спектра UVITS 301, при наблюдении которого ширина щели была равна 1".5. Все спектры, кроме Q 4250 и Q 4351, калиброваны по отпечаткам марок трубочных фотометров обсерваторий Стюард и Мак-Дональд. Спектры обработаны на универсальном спектрофотометре Бюраканской обсерватории.

Таблица 1

Дата	Порядковый номер	Телескоп	Эмульсия	Экспо- энция (мин)	Диспер- сия (Амм)	Спектраль- ный интер- вал (А)	
1. 6. 1973	957a	90"	Kodak IIa-O	45	240	3100-7300	
27. 7. "	Q 4250	200	Kodak IIa-D	20	190	33 00—6 7 00	
7 8. "	Q 4351	200	**	10	190	4500-7800	
23. 9. "	UVITS 301	107	11	25	230	3500-7300	
24. 9. "	UVITS 306b	107	11	15	230	89	
25. 9. "	UVITS 311.	107	11	25	230	49	

3. Контуры, эквивалентные ширины и относительные интенсивности линий. В спектрах объекта № 102 отождествлены эмиссионные линии H_{α} , [O III] № 5007, 4959, H_{β} , H_{τ} , H_{ϵ} , H_{ϵ} , H_{ϵ} [Ne III] № 3967, 3869 и ультрафиолетовый дублет Mg II № 2800. Построены контуры линий H_{α} , [O III] № 5007, 4959, H_{τ} и H_{δ} , приведенные на рис. 1. На нем для всех контуров масштаб по горизонтальной оси одинаков (он отмечен на рисунке). По вертикальной оси отложены величины $S_{\lambda} = I_{\delta}/I_{\delta}^{0} - 1$, где I_{λ} и I_{δ}^{0} — интенсивности внутри контура линии и непрерывного спектра соответственно. Масштаб для контура линии H_{α} по вертикальной оси взят в 2.5 раза меньше по сравнению с остальными линиями. Профили линий H_{α} и H_{δ} построены с помощью спектров Q 4351 и Q 4250 соответственно, а профили остальных линий по спектру № 957_в.

 H_a рис. 2 приведены репродукции спектров Q 4351 и Q 4250, на первой из которых хорошо видна широкая линия H_a , а на второй — остальные эмиссионные линии. Из рис. 2 видно также, что H с двух сторон максимума интенсивности сливается с линиями неба M 5577 и 5463. По этой причине построить ее профиль было трудно.

В табл. 2 приведены эквивалентные ширины некоторых линий и среднеквадратические ошибки одного измерения для различных дней. Из табл. 2 видно, что менее уверенные оценки получены для линии Нэ, так как при определении ее эквивалентной ширины довольно трудно было учесть влияние сливающихся с ней линий неба.

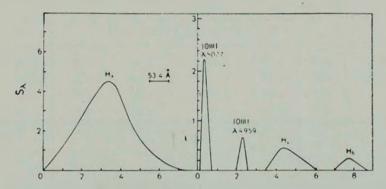


Рис. 1. Контуры эмиссионных линий объекта № 102: H_α . [О III] $\lambda\lambda$ 5007, 4959, H_γ и H_δ , построенные по спектрам Q 4250, Q 4351 и № 957а.

В табл. 3 приведены относительные интенсивности эмиссионных линий объекта \mathbb{N}_{2} 102, определенные по трем спектрограммам, и их средние значения. При определении относительных интенсивностей учет спектральной чувствительности системы для спектрограммы \mathbb{N}_{2} 957а проведен при помощи непрерывного спектра одной звезды типа $A0 = (\alpha_{1950} = 22^{h}43^{m}.3)$ $\alpha_{1950} = +11^{\circ}26'$, $m_{pg} = 15^{m}0$, спектр которой наблюден в той же системе, в ту же ночь.

Таблица 2

λο	₩ _λ (A)						
	957a	Q 4250	Q 4351	UVITS 301	UVITS 311c	₩ _λ (A)	3 (A)
6563	_	_	750	_	_	750	_
5007	39	40	_	29	29	34	6
4959	10	7	-	10	11	10	2
4861	88	110	_	60	76	84	21
4340	33	47		48	45	43	7
4102	14	12	_	15	14	14	1
	6563 5007 4959 4861 4340	6563 — 5007 39 4959 10 4861 88 4340 33	957a Q 4250 6563 - - 5007 39 40 4959 10 7 4861 88 110 4340 33 47	957 _a Q 4250 Q 4351 6563 — — 750 5007 39 40 — 4959 10 7 — 4861 88 110 — 4340 33 47 —	957 _a Q 4250 Q 4351 UVITS 301 6563 — — 750 — 5007 39 40 — 29 4959 10 7 — 10 4861 88 110 — 60 4340 33 47 — 48	957a Q 4250 Q 4351 UVITS 301 UVITS 311c 6563 — — 750 — — 5007 39 40 — 29 29 4959 10 7 — 10 11 4861 88 110 — 60 76 4340 33 47 — 48 45	957a Q 4250 Q 4351 UVITS 301 UVITS 311c (A) 6563 — — 750 — — 750 5007 39 40 — 29 29 34 4959 10 7 — 10 11 10 4861 88 110 — 60 76 84 4340 33 47 — 48 45 43

Что же касается спектральной чувствительности системы UVITS, то она определена с помощью известного распределения непрерывного спектра талактики 3С 120, приведенного в работе [7]. Ее спектры были получены

28 сентября 1973 г. в той же системе, с экспозициями 8 и 3 мин. Однакодля областей H_{α} и Mg II λ 2800 эта кривая определена неуверенно, поэтому их относительные интенсивности не определены.

Таблица 3 $I_{\lambda}/I_{\mathrm{H}_3}$ $I_{\lambda}/I_{\rm Ha}$ Ион No. UVITS 301 UVITS 311c 957_n 0.47 0.04 [[[] [0] 5007 0.39 0.42 0.43 0.14 [0 111] 4959 0.13 0.16 0.14 0.02 1.00 1.00 1.00 1.00 HI 4861 HI 0.35 0.48 0.34 0.39 0.08 4340 0.06 0.07 0.20 0.14 0.14 HI 4102 HI3970 0.05 0.11 0.08 [Ne III] 3967 HI 3889 0.19 0.1 0.17 0.30 0.09 [Ne III] 3869

Известно, что 3С 120 является переменным объектом, поэтому использовать его в качестве стандарта не совсем удобно. Однако мы вынуждены вто сделать, так как во время наблюдений с системой UVITS какие-либо другие стандартные объекты не были наблюдены. С другой стороны, для оценки относительных интенсивностей эмиссионных линий в области примерно № 3900—5000 А изменение яркости 3С 120 не может существенно повлиять на результаты. Это хорошо видно из сопоставления данных спектров UVITS со спектром № 957_а (см. табл. 3), при получении которых использованы разные стандартные объекты: в первом случае галактика 3С 120, во втором — звезда типа А0.

4. Обсуждение. В спектре объекта № 102 ширины эмиссионных линий бальмеровской серии H_2 — H_8 , а также линия Mg II λ 2800 существенно больше по сравнению с ширинами запрещенных линий [O III] $\lambda\lambda$ 5007 и 4959. Последние две линии по своим ширинам почти не отличаются от таковых линий неба, их полуширины составляют 18 и 17 A соответственно. Ширина линии H_2 достигает 400 A, а полуширина — 160 A. Те же самые величины для H_1 получаются соответственно 140 и 80 A, а для H_4 — 90 и 50 A.

Контуры эмиссионных линий бальмеровской серии асимметричны и лучше всего выражены у линий H_{τ} и H_{δ} (см. рис. 1), так как остальные линии бальмеровской серии, сливаются с линиями других элементов. Например, H_{τ} , имея огромную ширину, сливается с запрещенными линиями

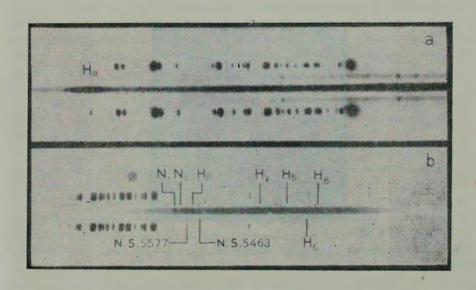


Рис. 2. Репредукции спектров объекта № 102 (a) Q 4351 и b) Q 4250).



Рис. 3. Репродукция фотографии объекта № 102 (2.6-м телескоп, оригинальный масштаб 1 мм = 20'').

К ст. М. А. Казаряна, Э. Е. Хачикяна.

IS II] 1). 6731/17 и [N II] 1 6583/48. Эмиссионная линия На, как было сказано выше, сливается с линиями неба 33.5577 и 5464. Линии Не и Не сливаются с запрещенными линиями [Ne III] дл 3967 и 3869 соответственно. Если предположить, что линии бальмеровской серии расширяются по причине эффекта Доплера, то полной ширине линии На будет соответствовать скорость 16000 км/с, а полуширине линии-7300 км/с. Значения тех же самых величин для других бальмеровских линий получаются более низким, причем они уменьшаются с увеличением номера линии в серии. Это, по-видимому, может быть обусловлено двумя причинами. а) Интенсивности эмиссионных линий бальмеровской серии обычно уменьщаются с увеличением номера линии. По этой причине на непрерывном спектре у слабых линий крылья могут быстро ослабевать и сливаться с непрерывным спектром. В пользу этого говорит тот факт, что в спектре объекта № 102 эмиссионные линии бальмеровской серии наблюдаются в меньшем количестве, чем у других эмиссионных галактик, у которых бальмеровские линиа узкие и менее интенсивные. 6) Поглощение излучения в самой галактике № 102 также может привести к такому эффекту.

В пользу этих двух предположений говорит и бальмеровский декремент (см. табл. 3), который круче, чем теоретический у газовых туманностей при моделях A и B.

Изображения объекта № 102 на пластинках, снятых на 40" и 2.6-м телескопах Бюраканской обсерватории и на 48" телескопе системы Шмидта обсерватории Хейл (США), в разных цветах (U, B, V, pg, R), не отличаются от изображений звезд. Это хорошо видно на рис. 3, на котором приведена фотография объекта № 102 (он отмечен черточками), полученная в первичном фокусе 2.6-м телескопа (оригинальный масштаб 1 мм = 20") в голубом цвете. Исходя из вышеописанных морфологических и спектральных характеристик можно заключить, что объект № 102 является квазизвездным объектом, со спектральными особенностями галактик типа Sy 1, т. е. его можно принять за ядро отдаленной галактики типа Sy 1.

Колоримегрические наблюдения объекта № 102, выполненные в системе UBV на 40″ телескопе системы Шмидта Бюраканской обсерватории, дают для $U-B=-0^{\rm m}84$, $B-V=+0^{\rm m}26$ и $V=15^{\rm m}78$. На диаграмме U-B, B-V он попадает в область квазаров и галактик Сейферта первого типа.

По светимости объект № 102 находится между галактиками сейферта и квазарами, хотя и существуют квазары, например, Ton 256 и PKS 0736+01, которые по светимости уступают ему (абсолютные фотографические величины этих квазаров, вычисленные по данным, приведенным в [8], равны $-22^{m}3$ и $-21^{m}4$, соответственно).

Таким образом, на примере объекта № 102 мы еще раз можем с уверенностью отметить, что некоторые квазары и галактики Сейферта пер-

вого типа — Sy 1 по своим физическим характеристикам представляются объектами одного класса.

Один из авторов (X. Э. Е.) выражает глубокую благодарность дирекциям обсерваторий Мак Дональд, Стюард и Хейл за предоставление возможности провести наблюдения на крупнейших телескопах этих обсерваторий.

Бюраканская астрофизическая обсерватория
Ереванский государственный университет

SPECTROPHOTOMETRIC STUDIES OF ONE OSO

M. A. KAZARIAN, E. Ye. KHACHIKIAN

The results of the spectrophotometric studies of the object N 102 from the list of the galaxies with UV excess [1] are presented. The profiles, equivalent widths and the relative intensities of the emission lines have been derived. It is concluded, that several QSOs and the Sy 1 galaxies according to physical characteristics are the objects of the same classies.

ЛИТЕРАТУРА

1. М. А. Казарян, Астрофизика, 15, 5, 1979.

2. E. Ye. Khachikian, D. W. Weedman, Ap. 1., 192, 581, 1974.

3. М. А. Казарян, Р. Ф. Карсвел, Э. Е. Хачикян, Астрон. цирк., № 813, 2, 1974.

4. H. C. Arp, Astrophys. Letters, 9, 1, 1971.

- 5. R. Lynds, Millikian, Ap. J. 176, L 9, 1972.
- 6. J. B. Oke, H. M. Toumassian, Astrophys. Letters, 13, 9, 1973.

7. J. B. Oke, A. J., 73, 849, 1968.

8. Дж. Бербидж, М. Бербидж, «Квазары», М., 1969.