On Long Cycles in Graphs in Terms of Degree Sequences

Mossine S. Koulakzian

Institute for Informatics and Automation Problems of NAS RA e-mail: mossine@hotmail.com

Abstract

Let G be a graph on n vertices with degree sequence $\delta = d_1 \leq d_2 \leq ... \leq d_n$. Let m be the number of connected components of G, c the circumference - the order of a longest cycle, p the order of a longest path in G and σ_s the minimum degree sum of an independent set of s vertices. In this paper it is shown that in every graph G, $c \geq d_{\sigma_m+m}+1$. This bound is best possible and generalizes the earliest lower bound for the circumference due to Dirac (1952): $c \geq \delta+1=d_1+1$. As corollaries, we have: (i) $c \geq d_{\delta+1}+1$; (ii) if $d_{\sigma_m+m} \geq p-1$, then c = p; (iii) if c = 1 is a connected graph with $c \geq 1$, then c = 1 is hamiltonian; (iv) if $c \geq 1$ is hamiltonian.

Keywords: Hamilton cycle, Longest cycle, Circumference, Minimum degree, Degree sequence.

1. Introduction

We consider only finite undirected graphs with neither loops nor multiple edges. A good reference for any undefined terms is [1].

The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G). Let n be the order (the number of vertices) of G, c the order of a longest cycle (called circumference) in G and p the order of a longest path. The minimum degree in G is denoted by δ and the minimum degree sum of an independent set of s vertices will be denoted by σ_s . Let $d_1, d_2, ..., d_n$ be the degree sequence in G with $\delta = d_1 \leq d_2 \leq ... \leq d_n$. We use N(v) to denote the set of all neighbors of vertex v and d(v) = |N(v)| to denote the degree of vertex v.

A path (simple path) of order m is a sequence of distinct vertices $v_1, ..., v_m$, denoted by $v_1v_2...v_m$, such that $v_{i-1}v_i$ is an edge for all $2 \le i \le m$. Similarly. a cycle of order m is a sequence of distinct vertices $v_1, ..., v_m$, denoted by $v_1v_2...v_mv_1$, such that $v_{i-1}v_i$ and v_mv_1 are edges for all $2 \le i \le m$. In particular, for m = 2, $v_1v_2v_1$ is a cycle of order 2; and for m = 1, v_1v_1 is a cycle of order 1. So, by the definition, every vertex (edge) can be considered as a cycle of order 1 (2, respectively). A graph G is hamiltonian if G contains a Hamilton cycle, that is a simple spanning cycle.

We write a cycle (a path) Q with a given orientation by \overrightarrow{Q} . The reverse sequence of vertices of \overrightarrow{Q} is denoted by \overleftarrow{Q} . For $x \in V(Q)$, we denote the predecessor of x on \overrightarrow{Q} (if such

vertices exist) by x^- . We use $P = x\overrightarrow{P}y$ to denote a path with end vertices x and y in the direction from x to y.

The earliest and simplest lower bound for the circumference was obtained in 1952 due to Dirac [2] in terms of minimum degree δ .

Theorem A: [2]. In every graph, $c \ge \delta + 1$.

Theorem A is best possible. However, the bound $c \ge \delta + 1$ in Theorem A is equivalent to $c \ge d_1 + 1$, which is far from being best possible. In this paper we present an improvement of Theorem A in terms of degree sequences without any additional conditions.

Theorem 1: Let G be a graph with m connected components and degree sequence $\delta = d_1 \le d_2 \le ... \le d_n$. Then $c \ge d_{\sigma_m+m} + 1$.

If $G = mK_{\delta+1}$, then $c = \delta + 1 = d_{m\delta+m} + 1 = d_{\sigma_m+m} + 1$. This graph example shows that the bound $d_{\sigma_m+m} + 1$ in Theorem 1 cannot be replaced by $d_{\sigma_m+m} + 2$. Next, let $G = m(K_{\delta} + \overline{K}_{\delta+1})$. Then $d_{\sigma_m+m+1} = d_{m\delta+m+1} = 2\delta = c$. This graph example shows that the lower bound $d_{\sigma_m+m} + 1$ in Theorem 1 cannot be replaced by $d_{\sigma_m+m+1} + 1$. Thus, Theorem 1 is best possible in all respects.

Corollary 1: Let G be a graph with degree sequence $\delta = d_1 \leq d_2 \leq ... \leq d_n$. Then $c \geq d_{\delta+1} + 1$.

The graph $K_{\delta} + (\delta + 1)K_1$ is δ -connected with $d_1 = d_2 = ... = d_{\delta+1} = \delta$ and $d_{\delta+2} = 2\delta$. Since $c = 2\delta$ and $d_{\delta+2} + 1 = 2\delta + 1$, the bound $c \ge d_{\delta+1} + 1$ in Corollary 1 cannot be replaced by $c \ge d_{\delta+2} + 1$. Thus, Corollary 1 is best possible even for high connected graphs.

The next three statements can be obtained from Theorem 1 easily.

Theorem 2: Let G be a graph with m connected components and degree sequence $\delta = d_1 \le d_2 \le ... \le d_n$. If $d_{\sigma_m+m} \ge p-1$, then c=p.

Corollary 2: Let G be a graph with degree sequence $\delta = d_1 \le d_2 \le ... \le d_n$. If $d_{\delta+1} \ge p-1$, then c = p.

Theorem 3: Let G be a graph with degree sequence $\delta = d_1 \le d_2 \le ... \le d_n$. If $d_{\delta+1} \ge p-1$, then G is hamiltonian.

Theorem 4: Let G be a graph with degree sequence $\delta = d_1 \le d_2 \le ... \le d_n$. If $d_{\delta+1} \ge n-1$, then G is hamiltonian.

2. Proofs

Proof of Theorem 1. Let $H_1, H_2, ..., H_m$ be the connected components of G and let $\overrightarrow{P} = u \overrightarrow{P} v$ be a longest path in H_1 . Clearly, $N(u) \subseteq V(P)$. Assume that

(a) P is chosen in H_1 so that d(u) is maximum.

Let $x_1, x_2, ..., x_t$ be the elements of N(u) occurring on \overrightarrow{P} in a consecutive order, where $t = d(u) \ge \delta$. Observe that for each $i \in \{1, 2, ..., t\}$,

$$x_i^{-} \overleftarrow{P} u x_i \overrightarrow{P} v$$

is a longest path in H_1 , implying that

$$N(x_i^-) \subseteq V(P) \quad (i = 1, 2, ..., t).$$

By (a),

$$d(u) \ge d(x_i^-)$$
 $(i = 1, 2, ..., t), \quad d(u) \ge d(v).$ (1)

M. Koulakzian 21

Put $C = u \overrightarrow{P} x_t u$. Clearly,

$$c \ge |V(C)| \ge t + 1 = d(u) + 1.$$

By (1),

$$d(u) \geq \max\{d(x_1^-), d(x_2^-), ..., d(x_t^-), d(v)\},$$

implying that

$$c \geq d(u) + 1 \geq \max\{d(x_1^-), d(x_2^-), ..., d(x_{d(u)}^-), d(v)\} + 1.$$

Analogously, for each $i \in \{1, 2, ..., m\}$, we can find pairwise distinct vertices $y_1^i, y_2^i, ..., y_{d(u_i)+1}^i$ in H_i such that

$$c \geq \max\{d(y_1^i), d(y_2^i), ..., d(y_{d(u_i)+1}^i)\} + 1,$$

where $u_i \in V(H_i)$. Since the vertices

$$y_1^1, y_2^1, ..., y_{d(u_1)+1}^1,$$

$$y_1^2, y_2^2, ..., y_{d(u_2)+1}^2,$$

.....

$$y_1^m, y_2^m, ..., y_{d(u_m)+1}^m$$

are all pairwise distinct, for some pairwise distinct vertices $z_1, z_2, ..., z_{d(u_1)+d(u_2)+...+d(u_m)+m}$ we have

$$c \ge \max\{d(z_1), d(z_2), ..., d(z_{d(u_1)+d(u_2)+...+d(u_m)+m})\} + 1$$

$$\ge \max\{d_1, d_2, ..., d_{d(u_1)+d(u_2)+...+d(u_m)+m}\} + 1$$

$$= d_{d(u_1)+d(u_2)+...+d(u_m)+m} + 1.$$

Observing also that $\{u_1, u_2, ..., u_m\}$ is an independent set of vertices, we obtain the desired bound $c \ge d_{\sigma_m+m}+1$.

Proof of Theorem 2. By Theorem 1, $c \ge d_{\sigma_m+m}+1 \ge p$. If $c \ge p+1$, then clearly the cycle of order at least p+1 contains a path with at least p+1 vertices, contradicting the fact that the longest path in G has exactly p vertices. Hence, c=p.

Proof of Theorem 3. Let G be a connected graph with $d_{\delta+1} \geq p-1$. Since m=1 and $d_{\sigma_m+m} \geq p-1$, by Theorem 2, c=p. Let \overrightarrow{C} be a longest cycle in G of length p. If p=n, then G is hamiltonian. Let p < n. Since G is connected, we have $vu \in E(G)$ for some $v \in V(C)$ and $u \in G-C$. Then

$$uv\overrightarrow{C}v^-$$

is a path on p+1 vertices, a contradiction.

Theorem 4 follows from Theorem 2 immediately.

References

- [1] J. A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [2] G. A. Dirac, "Some theorems on abstract graphs", *Proc. London, Math. Soc.*, vol. 2, pp. 69-81, 1952.

Submitted 22.08.2017, accepted 06.12.2017.

Գրաֆներում երկար ցիկլերի մասին աստիճանային հաջորդականությունների լեզվով

Մ. Քուլաքզյան

Ամփոփում

Դիցուք G-ն δ նվազագույն աստիճան և $\delta=d_1\leq d_2\leq ...\leq d_n$ աստիճանային հաջորդականություն ունեցող n գագաթանի գրաֆ է։ Գրաֆի կապակցվածության բաղադրիչների քանակը կնշանակենք m-ով, ամենաերկար ցիկլի երկարությունը c-ով, իսկ s անկախ գագաթների աստիճանների նվազագույն գումարը σ_s -ով։ Ներկա աշխատանքում ապացուցվում է, որ կամայական գրաֆում $c\geq d_{\sigma_m+m}+1$ ։ Ստացված գնահատականը ենթակա չէ բարելավման և ընդհանրացնում է 1952-ին Դիրակի կողմից ստացված $c\geq \delta+1=d_1+1$ գնահատականը։

О длиннейших циклах графа в терминах последовательности степеней вершин

М. Кулакзян

Аннотация

Пусть $\delta = d_1 \le d_2 \le \dots \le d_n$ - последовательность степеней вершин n-вершинного графа G с минимальной степенью δ . Число компонент связности графа G обозначается через m, длина длиннейшего цикла - через c, а минимальное число сумм степеней s независимых вершин -через σ_s . В настоящей работе доказывается, что в любом графе G, $c \ge d_{\sigma_m+m}+1$. Полученная оценка неулучшаема и обобщает оценку $c \ge \delta + 1 = d_1 + 1$ Дирака (1952).