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Abstract

Let D be a strongly connected directed graph of order n > 4. In [14] (J. of Graph
Theory, Vol.16, No. 5, 51-59, 1992) Y. Manoussakis proved the following theorem:
Suppose that D satisfies the following condition for every triple z,y, z of vertices such
that x and y are nonadjacent: If there is no arc from x to z, then d(z) +d(y)+d ™ (x) +
d~(z) > 3n—2. If there is no arc from z to x, then d(z)+d(y)+d ™ (z)+d* (z) > 3n—2.
Then D is Hamiltonian. In this paper we show that: If D satisfies the condition of
Manoussakis’ theorem, then D contains a pre-Hamiltonian cycle (i.e., a cycle of length
n—1) or n is even and D is isomorphic to the complete bipartite digraph with partite
sets of cardinalities n/2 and n/2.

Keywords: Digraphs, Cycles, Hamiltonian cycles, Pre-Hamiltonian cycles,
Longest non-Hamiltonian cycles.

1. Introduction

A directed graph (digraph) D is Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle
of length n, and is pancyclic if it contains cycles of all lengths m, 3 < m < n, where n is the
number of vertices in D. We recall the following well-known degree conditions (Theorems
1.1-1.8) which guarantee that a digraph is Hamiltonian. In each of the conditions (Theorems
1.1-1.8) below D is a strongly connected digraph of order n :

Theorem 1.1: (Ghouila-Houri [12]). If d(x) > n for all vertices x € V(D), then D is
Hamiltonian.

Theorem 1.2: (Woodall [18]). If d*(z) + d (y) > n for all pairs of vertices x and y
such that there is no arc from x to y, then D is Hamiltonian.

Theorem 1.3: (Meyniel [15]). If n > 2 and d(x) + d(y) > 2n — 1 for all pairs of non-
adjacent vertices in D, then D s Hamiltonian.

It is easy to see that Meyniel’s theorem is a common generalization of Ghouila-Houri’s
and Woodall’s theorems. For a short proof of Theorem 1.3, see [5].
C. Thomassen [17] (for n = 2k+1) and S. Darbinyan [7] (for n = 2k) proved the following:
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Theorem 1.4: (C. Thomassen [17], S. Darbinyan [7]). If D is a digraph of order n > 5
with minimum degree at least n — 1 and with minimum semi-degree at least n/2 — 1, then D
is Hamiltonian (unless some extremal cases which are characterized).

For the next theorem we need the following:

Definition 1: ([14]). Let k be an arbitrary nonnegative integer. A digraph D satisfies the
condition Ay if and only if for every triple x,y, z of vertices such that x and y are nonadja-
cent: If there is no arc from x to z, then d(z) +d(y) +d*(z) +d~(2) > 3n— 2+ k. If there
is no arc from z to x, then d(x) + d(y) +d~(z) +d*(z) > 3n — 2+ k.

Theorem 1.5: (Y. Manoussakis [14]). If a digraph D of order n > 4 satisfies the con-
dition Ay, then D is Hamiltonian.

Each of these theorems imposes a degree condition on all pairs of nonadjacent vertices
(or on all vertices). The following three theorems impose a degree condition only for some
pairs of nonadjacent vertices.

Theorem 1.6: (Bang-Jensen, Gutin, H.Li [2]). Suppose that min{d(x),d(y)} > n—1 and
d(z) +d(y) > 2n—1 for any pair of nonadjacent vertices x,y with a common in-neighbour,
then D 1s Hamiltonian.

Theorem 1.7: (Bang-Jensen, Gutin, H.Li [2]).Suppose that min{d*(z) + d~(y),d” (x) +
dt(y)} > n for any pair of nonadjacent vertices x,y with a common out-neighbour or a
common in-neighbour, then D is Hamiltonian.

Theorem 1.8: (Bang-Jensen, Guo, Yeo [3]). Suppose that d(z) + d(y) > 2n — 1 and
min{d*(x) +d (y),d (x) +d"(y)} > n—1 for any pair of nonadjacent vertices x,y with a
common out-neighbour or a common in-neighbour, then D is Hamiltonian.

Note that Theorem 1.8 generalizes Theorem 1.7.

In [11, 16, 6, 8] it was shown that if a digraph D satisfies the condition of one of Theorems
1.1, 1.2, 1.3 and 1.4, respectively, then D also is pancyclic (unless some extremal cases which
are characterized). It is natural to set the following problem:

Characterize those digraphs which satisfy the conditions of Theorem 1.6 (1.7, 1.8) but
are not pancyclic.

In many papers (in the mentioned papers as well), the existence of a pre-Hamiltonian
cycle (i.e., a cycle of length n — 1) is essential to the show that a given digraph (graph) is
pancyclic or not. This indicates that the existence of a pre-Hamiltonian cycle in a digraph
(graph) in a sense makes the pancyclic problem significantly easier. For the digraphs which
satisfy the conditions of Theorem 1.6 or 1.7 or 1.8 in [9] and [10] the following results are
proved:

(i) if the minimum semi-degree of a digraph D at least two and D satisfies the conditions of
Theorem 1.6 or a digraph D s not a directed cycle and satisfies the conditions of Theorem
1.7, then either D contains a pre-Hamiltonian cycle (i.e., a cycle of lengthn—1) orn is even
and D s isomorphic to the complete bipartite digraph K Jon/2 OT tO the complete bipartite
digraph K )5 , o minus one arc

(i) if a digraph D is not a directed cycle and satisfies the conditions of Theorem 1.8, then
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D contains a pre-Hamiltonian cycle or a cycle of length n — 2.
In [14] the following conjecture was proposed:
Conjecture 1.9: Any strongly connected digraph satisfying the condition As is pancyclic.

In this paper using some claims of the proof of Theorem 1.5 (see [14]) we prove the fol-
lowing theorem:

Theorem 1.10: Any strongly connected digraph D on n > 4 vertices satisfying the con-
dition Ag contains a pre-Hamiltonian cycle orn is even and D is isomorphic to the complete
bipartite digraph Ky, /-

The following examples show the sharpness of the bound 3n — 2 in the theorem. The
digraph consisting of the disjoint union of two complete digraphs with one common vertex
or the digraph obtained from a complete bipartite digraph after deleting one arc show that
the bound 3n — 2 in the above theorem is best possible.

2. Terminology and Notations

We shall assume that the reader is familiar with the standard terminology on the directed
graphs (digraph) and refer the reader to [1] for terminology not discussed here. In this paper
we consider finite digraphs without loops and multiple arcs. For a digraph D, we denote by
V(D) the vertex set of D and by A(D) the set of arcs in D. The order of D is the number of its
vertices. Often we will write D instead of A(D) and V(D). The arc of a digraph D directed
from z to y is denoted by zy. For disjoint subsets A and B of V(D) we define A(A — B) as
the set {xy € A(D)/x € A,y € B} and A(A, B) = A(A — B)UA(B — A). If z € V(D) and
A = {z} we write x instead of {z}. If A and B are two disjoint subsets of V(D) such that
every vertex of A dominates every vertex of B, then we say that A dominates B, denoted
by A — B. The out-neighborhood of a vertex x is the set N*(x) = {y € V(D)/zy € A(D)}
and N~ (z) = {y € V(D)/yx € A(D)} is the in-neighborhood of z. Similarly, if A C V(D),
then N*(z,A) = {y € AJzy € A(D)} and N~ (z,A) = {y € A/yx € A(D)}. The out-
degree of x is d(xz) = |[N*(z)| and d~(z) = |N~(x)| is the in-degree of x. Similarly,
dt(z,A) = |[N*(z,A)| and d (x,A) = [N (z,A)|. The degree of the vertex x in D is
defined as d(z) = d*(z) + d (x) (similarly, d(xz, A) = d*(z, A) +d (x, A)). The subdigraph
of D induced by a subset A of V(D) is denoted by (A). The path (respectively, the cycle)
consisting of the distinct vertices x1,xa, ..., Ty, ((m > 2) and the arcs x;x;11, @ € [1,m — 1]
(respectively, x;z;y1, @ € [1,m — 1], and x,,21), is denoted by z;xs---x,, (respectively,
T1To - - Tywy). We say that xyxs - - - x,, is a path from z; to z,, or is an (zy, z,,)-path. For
a cycle Cy := x1xq - - - xpx; of length k, the subscripts considered modulo k, i.e., x; = x, for
every s and 7 such that ¢ = s (mod k). A cycle that contains all the vertices of D (respectively,
all the vertices of D except one) is a Hamiltonian cycle (respectively, is a pre-Hamiltonian
cycle). The concept of the pre-Hamiltonian cycle was given in [13]. If P is a path containing
a subpath from z to y we let P[z,y| denote that subpath. Similarly, if C'is a cycle containing
vertices x and y, C[z,y| denotes the subpath of C' from = to y. A digraph D is strongly
connected (or, just, strong) if there exists a path from x to y and a path from y to z for every
pair of distinct vertices x,y. For an undirected graph G, we denote by G* the symmetric
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digraph obtained from G' by replacing every edge zy with the pair zy, yz of arcs. K,,
denotes the complete bipartite graph with partite sets of cardinalities p and ¢q. Two distinct
vertices x and y are adjacent if xy € A(D) or yz € A(D) (or both). For integers a and b,
a < b, let [a,b] denote the set of all integers which are not less than a and are not greater
than b. Let C' be a non-Hamiltonian cycle in digraph D. An (z,y)-path P is a C-bypass if
[V(P)| >3,z #yand V(P)NV(C) = {z,y}.

3. Preliminaries

The following well-known simple Lemmas 3.1-3.4 are the basis of our results and other the-
orems on directed cycles and paths in digraphs. They will be used extensively in the proofs
of our results.

Lemma 3.1: [11]. Let D be a digraph of order n > 3 containing a cycle Cy,, m € [2,n — 1].
Let x be a vertex not contained in this cycle. If d(x,C,,) > m+ 1, then D contains a cycle
Cy, for all k € [2,m + 1].

The following lemma is a slight modification of the lemma by Bondy and Tomassen [5].

Lemma 3.2: Let D be a digraph of order n > 3 containing a path P := x125...%,
m € [2,n — 1] and let x be a vertex not contained in this path. If one of the following
conditions holds:

(i) d(x, P) > m + 2;

(ii) d(z, P) > m+1 and xxy ¢ D or xp,x ¢ D;

(iii) d(x, P) > m, xz1 ¢ D and x,x ¢ D, then there is an i € [I,m — 1] such that
rix, xxiq € D, d.e., D contains a path x1xy ... 2,241 . . . Ty of length m (we say that x can
be inserted into P or the path x1xy ... x;xx4 ... %y 15 an extended path from P with x).

If in Lemmas 3.1 and 3.2 instead of the vertex = consider a path (), then we get the
following Lemmas 3.3 and 3.4, respectively.

Lemma 3.3: Let Cy := x129... 2,21, k > 2, be a non-Hamiltonian cycle in a digraph
D. Moreover, assume that there exists a path Q = yys...y., 7 > 1, in D — Cy. If
d~(y1, Cx) +d* (yr, C) > k+1, then for allm € [r+1,k+r] the digraph D contains a cycle
C,, of length m with vertex set V(C,,) C V(Cy) UV(Q).

Lemma 3.4: Let P = xyx9...24, kK > 2, be a non-Hamiltonian path in a digraph
D. Moreover, assume that there exists a path Q = y1ys...yp, ¥ > 1, in D — P. If
d~(y1, P) + d"(yr, P) > k + d~ (y1,{zx}) + d"(yr, {21}), then D contains a path from
to xy with vertez set V(P) UV (Q).

For the proof of our result we also need the following:
Lemma 3.5: ([14]). Let D be a digraph on n > 3 wertices satisfying the condition Ay.

Assume that there are two distinct pairs of nonadjacent vertices x,y and x,z in D. Then
either d(x) +d(y) > 2n —1 or d(x) +d(z) > 2n — 1.
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4. The Proof of Theorem 1.10
In the proof of Theorem 1.10 we often will use the following definition:

Definition 2: Let Py := zy25... 2, m > 2, be an arbitrary (z1,x,,)-path in a digraph
D and let y1,ys,...yx € V(D) — V(Fy). Fori € [1,k] we denote by P; an (z1,x,,)-path in
D with vertex set V(Pi—1) U{y;} (if it exists) such that P; is an extended path obtained from
P,_y with some vertex y;, where y; ¢ V(P;—1). If e + 1 is the mazimum possible number of
these paths Py, Py, ..., P., e € |0, k|, then we say that P, is an extended path obtained from P,
with vertices yy,Ya, - . ., Y as much as possible. Notice that P; (i € [0,€]) is an (x1,x,,)-path
of length m +1i — 1.

Proof of Theorem 1.10: Let C' := zyx5... 221 be a longest non-Hamiltonian cycle in
D of length k, and let C' be chosen so that (V(D) — V(C')) has the minimum number of
connected components. Suppose that £ < n — 2 and n > 5 (the case n = 4 is trivial). It
is easy to show that £ > 3. We will prove that D is isomorphic to the complete bipartite
digraph K3, 5, /5. Put R:= V(D) —V(C). Let Ry, Ry,..., Ry be the connected components
of (R) (i.e., if ¢ > 2, then for any pair 7,7, ¢ # j, there is no arc between R; and R;). In
[14] it was proved that for any R;, i € [1,q|, the subdigraph (V(C) U V(R;)) contains a
C-bypass. (The existence of a C-bypass also follows from Bypass Lemma (see [4]), since
(V(C)UV(R;)) is strong and the condition Ay implies that the underlying graph of the
subdigraph (V(C) U V(R;)) is 2-connected). Let P := 2,,y1¥s . . . Y, T+, be a C-bypass in
(V(CYUV(R;)) (i € [1,q] is arbitrary) and A; is considered to be minimum in the sense that
there is no C-bypass x,u1Us . . . Uy, Tatr, in (V(C) UV (R;)) such that r; < A\; and {xq, Tair, }
is a subset of {Z, Tyt -+, T, }-

We will distinguish two cases, according as there is a \;, i € [1,¢|, such that \; = 1 or
not.

Assume first that A\; > 2 for all i € [1,q]. For this case one can show that (the proofs
are the same as the proofs of Case 1, Lemma 2.3 and Claim 1 in [14]) if \; > 2, then
t; = |R;| = 1, in (V(C)) there is an (2,4, Tm)-path (say, P’) of length k£ — 2 with vertex
set V(P') =V(C) —{z}, where z; € {Zpmi1, Tmi2, -, Tmar,—1} and d(y1) +d(z;) < 2n —2
(note that y; and z; are nonadjacent). From |R| > 2 and |R;| = 1 (for all 7) it follows that
q > 2. If u € Ry, then d(u) = d(u,C) < k (by Lemma 3.1) and d(z1, R) = 0 (by minimality
of ¢q), in particular, the vertices z; and u are nonadjacent. Therefore, d(z1) = d(z,,C) < k
and d(z1)+d(u) < 2n—2. This in connection with d(y;)+d(z1) < 2n—2 contradicts Lemma
3.5.

Assume second that \; = 1 for all i € [1,q]. It is clear that ¢ = 1. Put ¢ := ¢; and
A= )\1 =1.

Observe that if vjvs...v; (maybe, j = 1) is a path in (R) and x;v, € D, then v;x;y; ¢ D
since C' is the longest non-Hamiltonian cycle in D and k£ < n — 2. We shall use this often,
without mentioning this explicitly.

The following claim follows immediately from A = 1 and the maximality of C.

Claim 1: R={y1,vy2,..., U} (le., t =n—Fk >2) yys...y; is a Hamiltonian path in
(R) and if 1 <i<j—1<t—1, then yy; ¢ D.

From Claim 1 it follows that

d*(y1, R) =d (y, R) =1 andif ie€[l,t—1], then d(y;, R) <i; (1)
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d(yi, R), d(ys, R) <n—k andif i€ [2,t—1], then d(y;,R)<n—k+1. (2)

Claim 2: (i). If v;y1 € D, then d™ (xip1,{v1,Y2, - -, %—1}) = 0;

(i1). If ysxin € D, then d (x;, {yo, Y3, - - -,y }) = d (i1, {y1,¥2, - - -, ¥s_1}) = 0;

(iii). d(y1,C) <k, d(y,C) < k and d(y;,C) < k—1 for all j € [2,t — 1] (by Lemma
3.2(iii) and Claim 2(ii) since A =1).

Claim 3: Assume that (R) is strong. If d*(z;, R) > 1, d"(xj, R) > 1 and |Clx;, x;]| > 3
for some two distinct vertices x;,x; (i,7 € [1,k]), then the following holds:

(i) d(z;-1, R) # 0 or A(R, Claisr, 75 2]) # 0;

(ii) d*(xis1, R) #£0) or A(R,Clziy0,x-1]) # 0.

(Here if |Cla;, ;]| = 3, then Clxiyr, xj-0) =0 and Clzye, ;1] =0).

Proof of Claim 3: Suppose that Claim 3(i) is false. Without loss of generality, assume
that zpyr,y,x € D (1 € 2,k — 1))

d (r;_1,R) =0 and A(R,Clxy,x;5]) =0. (3)
The subdigraph (R) contains a (y¢,y,)-path (say P(yy,y,)) since R is strong. We extend
the path Py := Clz;, z;] with the vertices 1, s, ..., 2, 1 as much as possible. Then some
vertices z1, 29, ..., &g € {T1,%a,..., 21}, d € [1,1 — 1], are not on the extended path P, (for

otherwise, it is not difficult to see that by Definition 2 there is an (z;, z;)-path P;, i € [0, €],
which together with the path P(y¢,vy,) and the arcs z,yy, y,2; forms a non-Hamiltonian cycle
longer than C'). Therefore, by Lemma 3.2(i), for all s € [1,d] the following holds

d(z5,C) <k+d—1. (4)
From (3) it follows that yy2; 1 ¢ D and y,2y 1 ¢ D. Hence, by Lemma 3.2(ii), we have
dy;,C) <k—1+2 and d(y,C)<k—-1+2

since neither y; nor y; cannot be inserted into C[z;_1,x)|. This together with (2) implies
that
dipn) <n—1+2 and d(y) <n-—1[1+2. (5)

If there exists a z; such that d(zs, R) = 0, then by d <[ —1, (4) and (5) we obtain that
d(zs) +d(y1) <2n—2 and d(zs) +d(y) <2n—2,

which contradicts Lemma 3.5 since z,,y; and z,,y; are two distinct pairs of nonadjacent
vertices. Assume, therefore, that there is no z, such that d(z;, R) = 0. Then from (3) it
follows that d = 1, 23 = ;—1 and d*(x;_1, R) > 1. Therefore, D contains an (x;, z)-path,
say @, with vertex set V(C') — {z;_1}. Since (R) is strong, it follows that in (R) there is a
(yf,yy)-path, say T. This path T together with the path @ and the arcs xyy, y,2; forms a
cycle C” which does not contain x;_;. From the maximality of C' it follows that |T'| =1 (i.e.,

yr =y,) and

d(xr, R —{ys}) = d” (2, R — {ys}) = 0. (6)
So, the cycle C’ has the length k& and V(C') = V(C) U {ys} — {z;—1}. It is not dif-
ficult to see that the vertices ;_1, y; are nonadjacent (for otherwise z;_1y; € D and
Ty Ypxy ... X1 ... -1 is a cycle of length k + 1, a contradiction). From this and
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d=(x;-1,R) = 0 (by (3)) we have d(x;—1, R) < n —k — 1. This together with d = 1 and (4)
implies that d(x;—1) < n — 1.

Assume first that y; # ;.

Let x;_1y1 € D. Then yy = y (by Claim 2(i)) and for the triple of vertices v, 11,y
condition Ay holds, since y12; 1 ¢ D and y;, x;_; are nonadjacent. Since yz; € D, from
(3) and Claim 2(ii) it follows that d(x;_1, R — {y1}) = 0, i.e., d(x;_1, R) = 1. This together
with (4) and d = 1 gives d(x;_;) < k + 1. Since D contains no cycle of length k + 1,
it follows that for the arc z;_1y; and the cycle C’, by Lemma 3.3, the following holds
d~(z;—1,C") + d*(y1,C") < k. This together with d*(y;, R) = 1 and d~ (x;_1, R) = 0 implies
that d™(z1—1) + d"(y1) < n — 2 (here we consider the cases k = n — 2 and k < n — 3
separately). Therefore, using condition Ay, (5), d(x;_1) < n —1 and [ > 2 we obtain

3n—2< d(yt) + d(l‘l_l) +d (.1'1_1) + d+(y1) <3n— 3,

a contradiction.

Let now z;_1y1 ¢ D. Then by (3) the vertices x;_1, y; are nonadjacent. From this ¢ > 3
since yf, x;—1 are nonadjacent and d*(z;—1, R) > 1. Thus, we have zxy1 ¢ D, yix; ¢ D (by
(6)) and d(y;, Clzy,2;-1]) = 0. Therefore, since y; cannot be inserted into C[xzy, zx], using
Lemma 3.2(iii) and (2) we obtain d(y;) < n — [. Notice that (by (2) and (4))

d(z;1) = d(z;-1,C) + d(z1-1, R —{y1,9r}) < k+d(@-1, R —{y1,y5}) <n—2,
and (by Lemma 3.2(i) and d(ys, Cz1,21-1]) = 0),
d(yy) = d(ys, C) + d(yy, R) < k — 1+ 2+ d(yy, R).
From the last three inequalities we obtain that
d(y1) + d(z11) < 2n— 1 -2,

and
d(yf) + d(l‘l_l) S 2k —1 + 2 + d(l’l_l, R — {yl, yf}) + d(yf, R)

Notice that
d(xi—1, R —{y1,yr}) +dys, R) <n—k—-2+n—k=2n—2k—2

since if z;_1y; € D, then y;y; ¢ D, where y; # y1,ys. The last two inequalities give
d(ys)+d(z;—1) < 2n—1 < 2n—2. This together with d(y;) +d(z;—1) < 2n —1—2 contradicts
Lemma 3.5 since x;_1,y; and x;_1,y; are two distinct pairs of nonadjacent vertices.

Assume next that yy = y;1. If 2,1,y are nonadjacent, then d(z;—1,{y1, y:}) = 0 and
d(x;_1,R) < n—k —2. Hence, by (4) and d = 1 we have d(x;_1) < n — 2. This together
with (5) implies that

d(y) +d(z—1) <2n—2 and d(y;) +d(z;_1) <2n—2,

which contradicts Lemma 3.5, since y1, x;_1 and y;, x;_1 are two distinct pairs of nonadjacent
vertices. So, we can assume that z;_1y; € D. Since (' is a longest non-Hamiltonian cycle,
d=(z;-1,R) = 0, (3) and d*(y, R — {x1}) < n —k — 2, from Lemma 3.3 it follows that
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d= (1) + d*(y) < n—2. Now using (5), d(x;—1) < n —1 and the condition Ay, for the
triple of the vertices x;_1, 41,y we obtain

3n—2<d(y)+dxi_1)+d (y) +d (r1-1) <3n—1—-1<3n-3,

which is a contradiction. Claim 3 is proved.

In particular, from Claim 3 immediately follows the following

Claim 4: Assume that (R) is strong and d*(x;, R) > 1, d”(xj, R) > 1 for some two
distinct vertices x; and x;. Then the following holds:

(i) if |Clxi, z;]| > 3, then A(R, Clzip1,xi-1]) # 0;

(ii) if |Clai, x;]| = 3, then d* (w41, R) > 1 and d(x;_1, R) > 1.

Now we divide the proof of the theorem into two parts: K <n —3 and k =n — 2.

Part 1. k<n-—3, te.,t>3.
For this part first we will prove the following Claims 5-10 below.

Claim 5: Lett > 3 and y:y1 € D. Then the following holds

(1) if z;y1 D, then d~(xi10, R) = 0; (ii) if yix; € D, then d* (x;—9, R) = 0, where i € [1, k].

Proof of Claim 5: (i). Suppose, on the contrary, that for some i € [1, k| z;u1 € D and
d~(x;12,R) # 0. Without loss of generality, we assume that z; = x; and d~ (23, R) # 0.
Then d~(z3, R — {y1}) = 0 and yy;x3 € D. It is easy to see that y;, xo are nonadjacent and

d_($27{y17y27"‘7yt—1}) = d+($27{y17y37y47“'7yt}) = 07 i'e'7 d($27R) < 2. (7)

Since neither y; nor x5 can be inserted into C|zs,z1], using (2), (7) and Lemma 3.2, we
obtain that

dip) =d(y1,C)+d(y1, R) <k+n—k=n and d(xy)=d(xs,C)+d(xe,R) <k+2.

On the other hand, by Lemma 3.3 and (1) we have that d~(y;) + d*(y;) < k + 2 since the
arc y;y; cannot be inserted into C'. Therefore, by condition A, the following holds

3n—2<d(y) +d(ze) +d (y) +d¥ (y1) < n+ 2k +4,

since yi, zo are nonadjacent and y;y; ¢ D. From this and & < n— 3 it follows that k = n — 3,
ToYa, Y21 € D and hence, the cycle xoysy1 2324 . . . T 179 has length k 4 2. This contradicts
the supposition that C' is a maximal non-Hamiltonian cycle.

To show that (ii) is true, it is sufficient to apply the same arguments to the converse
digraph of D. Claim 5 is proved.

Claim 6: Ift > 3 and the vertices y1, y: are nonadjacent, thent = 3 and ysya, yoy1 € D.

Proof of Claim 6: Without loss of generality, we can assume that x,y;, y,x2 € D (since
A=1).

Assume first that ¢ > 4 and y,y; € D for some i € [2,t — 2]. Since the arc y;y; cannot be
inserted into C, using Lemma 3.3, we obtain

From Claim 1 and the condition that ¥, y; are nonadjacent it follows that

dlyi;,R) <n—k—1 and d(y,R)<n—Fk-—1
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This together with Claim 2(iii) implies that d(y;) and d(y;) < n — 1. Since y;,y; are
nonadjacent and y;y: ¢ D, using (1), (8) and applying the condition Ag to the triple of the
vertices y1, Y, Yi, We obtain

3n—2<d(y)+dy)+d (y,C) +d" (y;,C) +d” (y, R) + d* (yi, R) < 3n — 3,

which is a contradiction.

Assume second that ¢ > 4 and yy; ¢ D for all i € [2,¢t — 2]. We also can assume that
yy1 ¢ D for all ¢ € [3,t — 1]. Therefore, d(y;, R) < 2 and d(y;, R) < 2. This together with
Claim 2(iii) implies that d(y:) < k+ 2, d(y) < k+ 2 and hence

d(yr) +d(y:) < 2k + 4. (9)

From t > 4 and the above assumptions it follows that ¥y, v; and y1, 31 are two distinct
pairs of nonadjacent vertices. From (9) and k£ < n—4 it follows that d(y1)+d(y;) < 2n—4. On
the other hand, since d(y1) < k+2, d(y:—1,C) < k—1 (by Claim 2(iii)) and d(yi—1, R) < n—k
(by Claim 1), we have

d(y1) + d(ys—1) < 2n — 3.

This together with d(y;) +d(y:) < 2n —4 contradicts Lemma 3.5. We, thus, proved that the
case t > 4 is impossible.

Assume finally that t = 3. Now we will show that ysys € D. Assume that this is not
the case, i.e., ysyo ¢ D. Then we can apply the condition Ay to the triple of the vertices
Y1, Y3, Y2, since the vertices y;,ys are nonadjacent and ysy, ¢ D. Notice that the arc yoys3
cannot be inserted into C' and hence d~ (y2, C') + d* (y3, C') < k (by Lemma 3.3). Therefore,
by Ap and Claim 2(iii), we obtain

3n—2 < d(y) +d(ys) +d (y2) +d"(ys) <3k +4 < 3n -5,

which is a contradiction. Therefore ysys € D.

Similarly we obtain a contradiction if we assume that y,y; ¢ D. Therefore, 3,1, € D.
Claim 6 is proved.

Claim 7: Ift > 3, then y,y1 € D.

Proof of Claim 7: Suppose, on the contrary, that ¢ > 3 and yy1 ¢ D, i.e., yi,y; are
nonadjacent. Then by Claim 6, t = 3 and ysys, yoy1 € D. Without loss of generality, assume
that z1y; and yszo € D (since A = 1). Notice that d(y;),d(y3) < n —1 (by Lemma 3.1) and
hence, d(y;) + d(ys3) < 2n — 2. We will distinguish two cases, according as there is an arc
from R to {z3,z4,...,2;} or not.

Case 7.1. A(R — {x3,24,...,25}) # 0.

Then there exists a vertex x; with [ € [3,k] such that d~(z;, R) > 1 and for [ > 4,
AR — {3, 24, ...,211}) = 0.

If I = 3, then from d~(x3, {y2,y3}) = 0 it follows that y;z3 € D. From this it is easy to see
that d(x2,{y1,y2}) = 0. Since neither y; nor y3 and x5 can be inserted into C[zs, x1] using
Lemma 3.2 we obtain that d(y), d(ys) and d(x2) < n—1. Hence, d(y1) +d(y3) < 2n—2 and
d(y1) + d(x2) < 2n — 2, which contradicts Lemma 3.5 since 1, y3 and y;, x2 are two distinct
pairs of nonadjacent vertices.

Assume, therefore, that [ > 4. If d*(z;_1, R) = 0, then d(z;_;, R) = 0 by minimality
of I. Therefore, Claim 4 implies that there is no x; € C[z2,2;-2] such that d*(x;, R) > 1.
Therefore, by the minimality of [ we have

A(R,Clas,z14]) =0 and dt(xq, R) =0,
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which contradicts Claim 3(ii) since z1y1 € D and d(z;, R) > 1. Assume, therefore, that
d*(z;—1,R) > 1. Without loss of generality, we may assume that y,z; € D and z;_1y; € D.
It is easy to see that y; # yg, yr,yy € {y1,y3} (e, 1192 ¢ D and yox; ¢ D) and the
vertices x;_1, x, are nonadjacent.

Assume first that | = 4. If y, = y3 (i.e., ysz4 € D), then 2191y2y324 . .. £,_37; s a cycle
of length n — 1, a contradiction. Assume, therefore, that y, = y; and yy = ys, i.e., y124 and
x3ys € D. Then the vertices xs, 3, are clearly nonadjacent and xoys ¢ D. Since yyz4 € D
and d~(z3, R) = 0, Claim 4(ii) implies that xoy, ¢ D. Therefore, d(za, {y1,72}) = 0. Notice
that x, cannot be inserted into the path Clxy, z1] (for otherwise in D there is a cycle of
length n — 3 which does not contain the vertices ¥, y3, x5 but this contradicts Claim 6 since
Y2, 3 are nonadjacent and yszz ¢ D). Now by Lemma 3.2 and the above observation we
obtain that

d(x2) = d(z2,Clzy, 1)) + d(22, R) + d(29, {23}) <N — 1.

Therefore, d(y;) + d(z3) < 2n — 2, which together with d(y;) + d(y3) < 2n — 2 contradicts
Lemma 3.5, since y;, x5 and yq, y3 are two distinct pairs of nonadjacent vertices.

Assume next that [ > 5. From the minimality of [, d~(z;_1, R) = 0 and Claim 4(ii) it
follows that d(z;_2, R) = 0. Therefore, there is no x; € C|xq,x;_5] such that d*(x;, R) > 1,
in particular, zoys ¢ D. Therefore

A(Clzs, 2], R) =0 and d(xq, R) =1,

(only ysxe € D). Since y, # y2 and x;_1,y, are nonadjacent, we have d(z;_;, R) = 1 (only
Ti—1Ya—g € D). By the above observation we have

d(yl, C[.I'Q,l‘l_g]) = d(yg, C[l‘g,l‘l_g]) = 0. (10)

Since y; cannot be inserted into C, xoys ¢ D and d~(x;-1, R) = 0, using (10) and Lemma
3.2 we obtain that d(y;,C) < k — 1+ 3. This together with d(y;, R) = 2 implies that

Now we extend the path Py := Clx;,x;] with the vertices x5, x3,...,2; 1 as much as
possible. Then some vertices z1, 2, ..., 24 € {®a2,23,..., 211}, d € [1,] — 2], are not on the
extended path P.. Therefore, d(z;,C) < k+d — 1 and hence, d(z;) < k+d for all i € [1,d].
Thus we have d(y;) + d(z;) < 2n — 3 and d(y3) + d(z;) < 2n — 3 since there is a vertex z;
which is not adjacent to y; or ys. This together with d(y1) + d(ys) < 2n — 2 contradicts
Lemma 3.5 since y1, 2; (or ys, z;) and yy, y3 are two distinct pairs of nonadjacent vertices. In
each case we have a contradiction. The discussion of Case 7.1 is completed.

Case 7.2. A(R — {z3,4,..., 1x}) = 0.

Without loss of generality, we may assume that A({z3,z4, ...,zx} — R) = 0 (for
otherwise, we consider the converse digraph of D for which the considered Case 7.1 holds).
Therefore A(R, {3, z4,..., x;}) = 0. In particular, z;, is not adjacent to the vertices y; and
ys. Notice that

d(y1) = d(y1, R) +d(y1,C) <2+ d(y1, {71, 72}) <5,

d(ys) < 5 and d(xy) = d(x,C) < 2n — 8. Therefore d(zy) + d(y;) < 2n — 3 and
d(zx) + d(ys) < 2n — 3, which contradicts Lemma 3.5. Claim 7 is proved. o
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Claim 8: Ift > 3 and for some i € [1,k| x;y1, then A(R — Clziy2,x-1]) = 0.

Proof of Claim 8: Suppose that the claim is not true. Without loss of generality, we
may assume that z1y; € D and A(R — {x3,24,...,2t}) # 0. Then there is a vertex z;
with [ € [3,k] such that d~(z;, R) > 1 and if [ > 4, then A(R — {x3,24,...,211}) = 0.
We have that y,57 € D (by Claim 7). In particular, y,y; € D implies that (R) is strong.
On the other hand, by Claim 5(i), d~(z3, R) = 0 and hence, | > 4. From z1y;, € D it
follows that there exists a vertex x, with r € [1,1 — 1] such that d*(z,, R) > 1. Choose
r with these properties as maximal as possible. Let z,ys and y,x; € D. Notice that in
(R) there is a (yy,y,)-path since (R) is strong. Using Claims 4(i) and 3(ii) we obtain
that 7 = [ — 1. Then y; # y, and in (R) any (yy,y,)-path is a Hamiltonian path. Since
(R) is strong, from d~(x;-1, R) = 0, d (x;, R) > 1 and from Claim 3(i) it follows that
A({xq,x3,...,21_2} — R) = ), in particular, d*(x, R) = 0. By the above observations we
have

A({l’g, Tyy - 71.1—2}7 R) = @7 d(yb {1.27 T3y .. 71.1—2}) = d($27 {yh Yo, .- 7yt—1}) = 0. (11)

Note that x5, y1 and x4, y2 are two distinct pairs of nonadjacent vertices. We extend the path
Py := Clx;,x;1] with the vertices s, 23,...,2;-1 as much as possible. Then some vertices
21,22y, 24 € {Ta,x3,..., 211}, where d € [1,] — 2|, are not on the extended path P,
(for otherwise, since in (R) there is a (yy,y,)-path, using the path P._; or P. we obtain a
non-Hamiltonian cycle longer than C'). By Lemma 3.2, for all i € [1,d] we have

d(z,C)<k+d—1 and d(z)=d(z,C)+d(z,R) <k+d—1+d(z,R). (12)

Assume that there is a vertex z; # ;1. Then, by (11), d(z;, R) < 1 (since d(x2, R) < 1).
Notice that yi, z; and ys, z; are two distinct pairs of nonadjacent vertices (by (11)). Since
neither y; nor y, can be inserted into Clx;_1,z1] and y12;-1 € D, yox;—1 ¢ D, by Lemma
3.2(ii) and (11) for j = 1 and 2 we obtain

d(y;, C) = d(y;, Cloiy, m]) <k —1+3. (13)
In particular, by (2),
diy) =d(y1,C)+d(y1,R) <k—-1+3+n—k=n—1+3.
This together with (12) and d(z;, R) < 1 implies that
d(y1) +d(z) < 2n —2,

since k <n —3 and d < — 2. Therefore, by Lemma 3.5, d(y2) + d(z;) > 2n — 1. Hence, by
(2) and (12) we have

2n — 1 < d(y) + d(z;) < n+d+d(z, R) + d(ys, O).

From this, d < [ — 2 and (13) it follows that d(y,,C) = k—1+3, d(z2;, R) =1 and k = n — 3.
Then z; = x5 and yz2 € D (by (11) and d*(z2, R) = 0). Therefore, x1y2 ¢ D. From this,
yox;_1 ¢ D and d(yo,C) = k — [+ 3, by Lemma 3.2(iii), we conclude that y, can be inserted
into C, which is contrary to our supposition that C'is a longest non-Hamiltonian cycle.
Now assume that there is no z; # x;-1. Then d = 1, z; = ;-1 and there is an (2, z1)-
path with vertex set V(C') — {z;-1}. Therefore, d~(z;, {y2,vs,...,4:}) =0 (since z1y; € D)
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and y;z; € D. From this we have, d(x;_1, R — {y2}) = 0 since y;y1 € D and [ is minimal,
in particular, the vertices w, ;-1 are nonadjacent. This together with (12) implies that
d(x;—1) <k +1 (only z;_1y2 € D is possible). Notice that neither y; nor the arc yy; can be
inserted into C, and therefore, by Lemmas 3.2, 3.3 and by (1), (2) we obtain that d(y,) < n
and d~(y;) + d"(y1) < k + 2. Since y1y; ¢ D and y,;, x;_; are nonadjacent we have that the
triple of the vertices y;, x;_1, y1 satisfies condition Ay. Therefore

3n—2<d(zi—1) +dye) +d (y) +d*(y1) <3n—3

since k < n — 3, which is a contradiction. Claim 8 is proved.

Claim 9: Ift > 3, 1y, and yxo € D, then d~ (x4, R) = 0.
Proof of Claim 9: Assume that d (z;,R) > 1. By Claim 7, y;y1 € D. Now using
Claims 5(ii) and 8, we obtain that d*(zy, R) = 0 and

AR — {x3, 74, .., 25}) = 0. (14)

In particular, d(xy, R) = 0. This together with d~(z1, R) > 1, (14) and Claim 3 implies that
A({xq,x3,...,2,_1} — R) = 0. Now again using (14) we get that A({x3, x4, ..., 2}, R) = 0.
This together with d*(xe, R) = d~ (z2,{y1,%2,.-.,y%—1}) = 0 implies that d(xq, R) = 1,
d(y2,C) <1 (only yo21 € D is possible) and d(x3, R) = 0. Therefore, by (2),

and d(yy) + d(x2) < 2n — 2, which contradicts Lemma 3.5 since ys, 3 and ys, 25 are two
distinct pairs of nonadjacent vertices. This completes the proof of Claim 9. 4

Claim 10: Ift > 3, 21y, and y;x5 € D, then A({x3, x4, ..., 1} — R) = 0.

Proof of Claim 10: By Claim 7, y;5; € D. Suppose that A({x3, x4, ..., 21} — R) # 0.
Recall that Claim 5(ii) implies that d*(zy, R) = 0. Let x,, r € [3,k — 1], be chosen so that
x,y; € D for some i € [1,¢] and r is maximum possible. Then A({z,41, Tr12,..., 21}, R) =0
and d~(z1,R) = 0 by Claim 8 and Claim 9, respectively. This together with yxs € D
contradicts Claim 3(i). Claim 10 is proved.

Now we are ready to complete the proof of Theorem 1.10 for Part 1 (when k < n — 3,
i.e.,, t > 3). By Claim 7, y,y; € D. Without loss of generality, we may assume that z,y; and
yire € D since A = 1. Then from Claims 8, 9 and 10 it follows that

A(R — {.1'3,1'4, e ,.I'k,l'l}) = A({$3,$4, c. ,.I'k} — R) = @

From this and

d_(x% {yl,y2, s 7yt—1}) = d+($17 {y27y37 ce 7yt}) =0
we obtain that x1, y and x4, y; are two distinct pairs of nonadjacent vertices and d(y,, C') < 1,
d(y:, C) < 2, d(z1,R) = 1. Therefore, d(y2) < n —k+2, dly) < n—Fk+2 (by (2))
and d(x1) < 2k — 1. The last three inequalities imply that d(y2) + d(z1) < 2n — 2 and
d(y:) + d(z1) < 2n — 2, which contradicts Lemma 3.5 and completes the discussion of Part
1.

Part 2. k=n—2, 1.e., t = 2.
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For this part first we will prove Claims 11-16 below.

Claim 11: If z,yr € D and yotn ¢ D, wherei € [1,n — 2] and f € [1,2], then there is
nol € [3,n — 2| such that ysx;ri—1 € D and d(ys, {Ti+1, Tito, ..., Titi—2}) = 0.

Proof of Claim 11: The proof is by contradiction. Suppose that x;ys,ysx;41—1 € D
and d(ys, {Tit1, Tiz2, ..., Tipi—2}) = 0 for some [ € [3,n —2]. Without loss of generality, we
may assume that z; = z1. Then x1yf, yrx; € D and d(yy, {xa, x3,..., 11-1}) = 0. Since D
contains no cycle of length n — 1, using Lemmas 3.2 and 3.3, we obtain that

d (1) +dt(ye) <n—2 and d(y) <n—1+2. (15)
We extend the path Py := Clz;, z1] with the vertices xo, 23, ..., 2;-1 as much as possible.
Then some vertices z1, 22, ..., 24 € {x2,T3,..., 21}, d € [1,] — 2], are not on the extended

path P,. Therefore, by Lemma 3.2, d(21) = d(21,C) + d(z1, {ys_s}) < n+d—1. Now, since
the vertices yy, 2; are nonadjacent and y,y; ¢ D, by condition Ay and (15) we have

3n—2 <d(ys) +d(z) +d (1) +d (y2) < 3n—3,

a contradiction. Claim 11 is proved. o

Claim 12: yyy; € D (i.e., if k =n — 2, then (V(D) — V(C)) is strong).

Proof of Claim 12: Suppose, on the contrary, that yoy; ¢ D. Without loss of generality,
we may assume that z1y; € D and the vertices y;, xo are nonadjacent. Then yoxs ¢ D and
since D contains no cycle of length n — 1, using Lemma 3.3 for the arc y;,y> we obtain that

d™(y1) +d*(y2) <n —2. (16)

Case 12.1. d* (y1,Clxs, xp_s]) > 1.

Let z;, | € [3,n — 2|, be chosen so that y;2; € D and [ is minimum, i.e.,
dt(y1, Clza, 11]) = 0. Tt is easy to see that the vertices y; and x;_; are nonadjacent.
By Claim 11, we can assume that [ > 5 (if I < 4, then d(yy, C|xs,2;_1]) = 0, a contradic-
tion to Claim 11) and d~(y1, Clxs, z1-2]) > 1. It follows that there exists a vertex x, with
r € [3,1 — 2] such that z,y, € D and d(y1, Clz,41,2-1]) = 0. Consequently, for the vertices
Y1, T and z; Claim 11 is not true, a contradiction.

Case 12.2. d*(yy, Clxs, x,_o]) = 0.

Then d*(yy, C[z2, T, 5]) = 0 and either yyz; € D or yy21 ¢ D.

Subcase 12.2.1. yyx1 € D.

Then z,,_2y1 ¢ D and hence, the vertices yi, z,,—o are nonadjacent. Therefore, the triple of
the vertices y1, T,,—2, Yo satisfies the condition Ay. Claim 11 implies that d~ (y;, Clza, zp—2]) =
0. This together with d*(y;, Clz2,z,—2]) = 0 and yoyn ¢ D gives d(y;) = 3. Clearly,
d(x9) < 2n — 4 and hence, for the vertices 1,99, 2 by condition Ay and (16) we have,

3n — 2 S d(yl) + d(l‘g) + d_(yl) + d+(y2) S 3n — 3,

which is a contradiction.

Subcase 12.2.2. y1x1 ¢ D.

Then d*(y;,C) = 0, d*(y;) = 1 and d*(y,,C) > 1 since D is strong. Without loss of
generality, we may assume that d~(y2, C') = 0 (for otherwise for the vertex y, in the converse
digraph of D we would have the above considered Case 12.1 or Subcase 12.2.1). Since the
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triple of the vertices yi, ya, x5 satisfies the condition Ay, d(y1) < n —2, d(z2) < 2n — 5 and
(16), it is not difficult to show that n > 7.

Suppose first that yozo € D. Then x, 2y1 ¢ D and hence, the vertices x,_ o, are
nonadjacent.

Let for some [ € [3,n — 3] zyyy € D and d (y1,Clz141,202]) = 0. Then
d(y1, Clxis1, Tn2]) = 0 and d(y;) < [ since d¥(y;,C) = 0 and x5,y are nonadjacent.
Extend the path Py := Cf[za,x;] with the vertices x;i1,Z142,...,Tn_2,21 as much as pos-
sible. Then some vertices z1,29,...,24 € {%i41, %142, Tp_2, 21}, d € [2,n — [ — 1],
are not on the extended path P,. For a vertex z; # x; by Lemma 3.2 we obtain that
d(z;) = d(z;,C) + d(z;,{y2}) < n+d— 1. Therefore, since yoy; ¢ D and the vertices z;, y;
are nonadjacent, by condition Ay and (16), we get that

3n—2<d(y1)+d(z)+d (y1) +d*(y2) < 3n—4,

which is a contradiction.

Let now xy; ¢ D for all [ € [3,n — 2], i.e, d (y1,C|xs, 2, 2]) = 0. Then from
dt(y1,Clra,wp—2]) = 0, yazy € D and x,_2ys ¢ D (since d™(y2,C) = 0) it follows that
d(y1) = 2 and d(z,—2) < 2n — 5. From this, since the vertices 31, x,_» are nonadjacent and
yo2y1 ¢ D, by condition Ay and (16) we have that

3n — 2 < d(yl) + d(l‘n_g) + d_(yl) + d+(y2) < 3n — 5,

which is a contradiction.

Suppose next that yszs & D. Then d(yo, {2, 23}) = 0, since d~ (y,, C') = 0.

Let for some l € [4,n—2] yox; € D and d* (ys, C[xa, x;_1]) = 0. Then d(ys, Clxe, x;1]) =0
and the vertices y1, ;_2 are nonadjacent since d* (y;, C|xa, x,_2]) = 0. It is easy to see that
there exists a vertex z, € {x1, 2, ..., 23} such that z,y; € D and d(y1, Cz,11,21-2]) = 0.
Thus, we have that A(R,C[z,y1,7-2]) = 0. Notice that d(y2) < n — 1 + 1 since
d (y2,C) = 0 and d(yo, Clza,2;-1]) = 0. We extend the path Py := Clz;,z,] with
the vertices x,,1,%,19,...,2_1 as much as possible. Then some vertices 21, 23,...,24 €
{Zr41,Trg2, ... 211}, d € [2,0 —r — 1], are not on the extended path P,. Therefore, by
Lemma 3.2 for z; # x;_; we have, d(z;) < n+d—3. Now by condition Ay and (16) we obtain

3n—2 <d(ys) +d(z)+d (y1) +d"(y2) < 3n—3,

a contradiction.
Let now d* (y2, {z2,x3,...,,—2}) = 0. Then d(y2) = 2, d(z2) < 2n — 6 and the vertices
X2, 1y2 are nonadjacent. By condition Ay we have

3n—2 < d(ys) + d(xz) +d™ (y1) +d" (y2) < 3n — 3,

a contradiction. Claim 12 is proved. o

Claim 13: For anyi € [1,n — 2] and f € [1,2] the following holds

i) d=(ys {zicr,2i}) <1 and i) d* (yy, {zi1,2:}) < 1.

Proof of Claim 13: The proof is by contradiction. By Claim 12, ys1y;, € D. Without
loss of generality, we may assume that z,_sy1, x,_2y1 € D and y;, x; are nonadjacent. It is
easy to see that d*(ye, {1, 22}) =0, 12,2 ¢ D and y1x9 ¢ D (for otherwise, if yy29 € D,
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then @, _oy1xoxs ... Ty Ty_o is a cycle of length n — 2 for which ({y2,z1}) is not strong, a
contradiction to Claim 12). Therefore, A(R — {z1,22}) = 0. Again using Claim 12, it is
not difficult to check that n > 6.

Assume first that A(R — {x3,24,...,2,-3}) # 0. Now let x;, [ € [3,n — 3], be the
first vertex after x5 that d=(z;, R) > 1. Then A(R — {z1,22,...,2;-1}) = 0 since A(R —
{z1,22}) = 0 (in particular, d~(z;—1, R) = 0). From the minimality of [ and x, o1y € D
it follows that there is a vertex x, € {x,_o2,21,22,...,2,_2} such that d*(z,, R) > 1 and
A({zy41, Tri2,y - oy x—2}, R) = 0 (if &, = z,_9, then x, 41 = 7). This contradicts Claim 3(i)
since d~(z;_1, R) = 0 and (R) is strong.

Assume next that A(R — {x3,24,...,2,_3}) = 0. This together with A(R — {z1,25}) =
() gives that A(R — {x1,22,...,2,_3}) = 0. From this, since D is strong and y;x, o ¢ D,
it follows that yox,—o € D. Then z, 3y, ¢ D and z,_4y1 ¢ D. Now using Claim 12 we
obtain that d(ye2, {Zn_4,Tn—3}) = 0. Since d~(x,_3, R) = 0 and y22,,—2 € D, from Claim 3(i)
it follows that d*(x,_4, R) = 0. Therefore, d(x, 4, R) = 0. If A({xy,29,...,2, 5} —
R) # 0, then there is a vertex z, with » € [1,n — 5] such that d*(z,,R) > 1 and
AR, {xri1,Try2y -, Tna}) = 0 (n > 6) which contradicts Claim 3(i), since yox, o € D
and d~ (x,_3, R) = 0. Assume therefore that A({x1,xs,...,2,_4} — R) = 0. Thus, we have
that A({x1, 22, ..., 2p-4},R) = 0 and d™ (z,—3, R) = 0. Then d(y1) = 4, d(y2) < 4 and
d(z1) <2n —6. From this it follows that d(y;) + d(z1) < 2n — 2 and d(ys) + d(z;) < 2n—2
which contradicts Lemma 3.5. This contradiction proves that d~(yy, {z;—1,2;}) < 1 for all
i€[l,n—2] and f € [1,2]. Similarly, one can show that d*(y, {z;—1,2;}) < 1. Claim 13 is
proved.

Claim 14: If z;y; € D (respectively, yrx; € D), then d(ys, {xit2}) # 0 (respectively,
d(ys,{zi—2}) #0), where i € [1,n—2] and f € [1,2].

Proof of Claim 14: Suppose that the claim is not true. By Claim 12, yy; € D.
Without loss of generality, we may assume that z, oy € D and d(y1,{z2}) = 0, ie.,
the vertices y; and xo are nonadjacent. Claim 13 implies that the vertices y;,z; also are
nonadjacent. Thus, d(yi, {z1,x2}) = 0. Note that yoxs ¢ D and hence, d~ (z2, R) = 0. Now
it is not difficult to cheek that if n = 5, then d(y;) + d(z1) < 8 and d(y;) + d(x2) < 8, a
contradiction to Lemma 3.5.

Assume, therefore, that n > 6 and consider the following cases.

Case 14.1. A(R — {x3,24,...,Tn_3}) # 0.

Then there is a vertex x; with [ € [3,n — 3] such that d~(z;,R) > 1 and A(R —
{9, 23,...,21_1}) = 0 since d(y1, {x1,22}) = d” (22, R) = 0. We now consider the case | = 3
and the case [ > 4 separately.

Assume that [ = 3. Then yoz3 € D or yyz3 € D.

Let yox3 € D. Then the vertices ys, xo are nonadjacent. Since the vertices yi,xo are
nonadjacent Claim 12 implies that z1y2 ¢ D (for otherwise x, oZ1Ys®3...Tp_sTp_2 IS a
cycle of length n — 2 which does not contain the vertices y;, x5 and ({y1,x2}) is not strong,
a contradiction to Claim 12). This contradicts Claim 3(ii) because of d(zy, R) = 0 and
dt(zy, R) =0.

Let now yyz3 € D and yox3 ¢ D. Then it is easy to see that x1y ¢ D and yaz0 ¢ D.
From this and Claim 12 implies that neither z; nor xzo can be inserted into C|x3,x, 2.
Notice that if xoys € D, then z, oz ¢ D, and if ypz1 € D, then x123 ¢ D. Now using
Lemma 3.2, we obtain that d(y;), d(z;) and d(z5) < n—1 since d(y, {x1,x2}) = 0. Therefore

diy1) +d(z1) <2n—2 and d(y1)+d(ze) < 2n — 2,
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which contradicts Lemma 3.5 since y;,x; and yi, xo are two distinct pairs of nonadjacent
vertices. This contradiction completes the discussion of Case 14.1 when [ = 3.

Assume that [ > 4. Let y,x; € D, where g € [1,2]. Then, by the minimality of [,
the vertices y,,x;—1 are nonadjacent, ys_,z;—1 ¢ D and x;_2ys—y ¢ D. Hence, by Claim
12 we get that x;_5y, ¢ D. From the minimality of [ and d~ (29, R) = 0 (for [ = 4) it
follows that x;_o is not adjacent to y; and ¥y, i.e., d(z;_5, R) = 0. This together with
d~(x9, R) = d~(x;-1, R) = 0, the minimality of [ and Claim 3(i) implies that

AR, {z9,23,...,015}) =0 and d*(x,R) =0

(if d*(x1, R) > 1, thenl > 5 and there is an x, with r € [1,1—3] such that d* (z;_;, R) = 0 and
A(R, C[xy41,7-3]) = 0 but this contradicts Claim 3(i)). If d~(z1, R) = 0 or d*(2;-1, R) = 0,
then d(xq, R) = 0 or d(x;_1, R) = 0, respectively. This together with A(R, Clza,2;-2]) = 0
contradicts Claim 3 since d*(x,_o,R) > 1 and d™(x;, R) > 1. Assume, therefore, that
d~(z1,R) > 1 and d*(z;_1, R) > 1. Tt follows that y,x; € D since y1x1 ¢ D.

Assume first that y, = yo. Then z;_1y; € D. Since y12,-1 ¢ D, z1y2 ¢ D and

d(yh C[:Cla '1.1—2]) = d(y27 C[:CQ’ xl—l]) =0
using Lemma 3.2(ii) we obtain that

d(y1) = d(y1, {y2}) + d(y1, Clrimr, 2n—2]) <n—1+2 and

d(y2) = d(y2. {y1}) + d(ye, Clay, 21]) <n— 1+ 2. (17)
Now we extend the path Py := C[x;, x, o] with the vertices z1,xs,...,2;,_; as much as
possible. Then some vertices z1, 2, ..., 24 € {x1,%2,..., 211}, d € [2,] — 1], are not on the

extended path P, since otherwise P, ; or P, together with the arcs x,_oy1,y1y2 and ysx;
forms a cycle of length n — 1. Therefore, by Lemma 3.2, we have that d(z;,C) <n+d — 3.
If there is a z; € {1, 21}, then d(z;) < n+d— 3 and by (17),

d(z)+d(y1) <2n—2 and d(z)+d(yy) < 2n—2,

which contradicts Lemma 3.5 since z; is not adjacent to y; and y,. Therefore, assume that
{z1,20} = {x1,211} (d = 2). Then P, (e =1 —3 > 1) is an (x;,x,_»)-path with vertex
set V(C) — {x1,2_1}. Thus, we have that ys P.y1, is a cycle of length n — 2. Therefore,
by Claim 12, x1x;_1 € D, and hence, xix;_1P._1y1y221 is a cycle of length n — 1, which
contradicts the initial supposition that D contains no cycle of length n — 1.

Assume second that y, = y;. Then by the above observation we conclude that z;_1y, €
D and d(y1,C[z1,21-1]) = 0. Using Lemma 3.2, we obtain that for this case (17) also
holds, since z1y, ¢ D and yox; 1 ¢ D. Again we extend the path C|x;, x,_»] with vertices

x1,%2,...,x;_1 as much as possible. Then some vertices z1, 29,...,24 € {z1,22,..., 211},
d € [1,1—1], are not on the extended path F,. Similar to the first case when y, = s, we will
obtain that z; ¢ {2, x3,...,2,-2} (i.e., z; = 21 or z; = ;1) and d(z;) < n +d — 2. Notice

that C' := y; Py is a cycle of length n —d — 1 with vertex set V/(C) U{y1} —{#1, z4}. From
Claim 12 it follows that d = 2, i.e., {21, 24} = {z1,2,1} (since 195 ¢ D and yz; 1 ¢ D).
Now from | >4, d =2, (17) and d(z;) < n + d — 2 we obtain that

dy1) +d(z1) <2n—2 and d(y1) + d(z-1) < 2n — 2,
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which contradicts Lemma 3.5, since y1, 21 and ¥y, ;1 are two distinct pairs of nonadjacent
vertices.

Case 14.2. A(R — {x3,24,...,2y_3}) = 0.

Then A(R — {x,_2,21}) # 0 since d”(z2, R) = 0 and D is strong, and y;,x,_3 are
nonadjacent (by Claim 13). For this case we distinguish three subcases.

Subcase 14.2.1. yox,,_9 € D.

Then, using Claim 13, it is easy to see that z,_3,y> are nonadjacent. There-
fore, d(z,_3,R) = 0. This together with ysx, » € D and Claim 3 implies that
A({zy, 29, ...,1y_3} — R) = 0. Therefore, d(R,{rs,3,...,2,-3}) = 0 and d(y;),
d(y2) < 4 (since yox; ¢ D by Claim 13) and d(x,_3) < 2n — 6. From this it follows
that d(y1) + d(zn—3) < 2n —2 and d(y2) + d(x,—3) < 2n — 2, which contradicts Lemma 3.5.

Subcase 14.2.2. yoxp, o & D and yox1 € D.

Then using Claim 13 it is easy to see that y, and x,,_o are nonadjacent.

Let z,,—3ys € D. Then y;x,-2 € D (by Claim 12). Using Claims 12 and 13 we obtain
that x,_4 is not adjacent to y; and y. Since d~(z,_3, R) = 0 and y;x, o € D, from Claim
3(i) it follows that A({z1,22,...,2,_4} — R) = 0 and A(R, Clzq, x,_4]) = (. Therefore and
d(y1) = d(y2) = 4 and d(z2) < 2n — 6. From these it follows that

d(yy) +d(zy) <2n—2 and d(ys) + d(zs) < 2n — 2,

which contradicts Lemma 3.5 since x5, y; and w9, ¥y, are two distinct pairs of nonadjacent
vertices.

Let now x,_3y2 ¢ D. Then ys,x, 3 are nonadjacent and hence, d(z,-3,R) = 0.
Now, since 12,92 € D or d (z,-2,R) = 0 and yex; € D, from Claim 3 it follows that
A({xq,x3,...,25-3} — R) = 0. Therefore

d(yh C['I.lal.n—?)]) = d(y27 C[‘I.Q’l.n—Q]) = 07

d(y1) <4, d(y2) <4 and d(zy) < 2n — 6. This contradicts Lemma 3.5 since x5, y; and 5, yo
are two distinct pairs of nonadjacent vertices.

Subcase 14.2.8. yoxn_o & D and yox1 ¢ D.

Then yyz,,_o € D (since D is strong), the vertex y; is not adjacent to the vertices x,,_3,
Tp—yg and T,_4y2 ¢ D, i.e., the vertices ys, z,,—4 also are nonadjacent. Using Claim 3, we can
assume that A(C[xq,x,_4] — R) = 0. Therefore, d(y,) = 4, d(y2) < 3 and d(x;) < 2n — 6.
This contradicts Lemma 3.5 since x; is not adjacent to y; and y». This completes the proof
of Claim 14. 4

Claim 15: If z;y; € D and the vertices ys, x;y1 are nonadjacent, then the vertices
Tit1,Ys—p are adjacent, where i € [1,n —2] and f € [1,2].

Proof of Claim 15: Without loss of generality, we may assume that z; = z,, 5 (i.e.,
Tiy1 = 1) and yr = y;. Suppose, on the contrary, that z1,y, are nonadjacent. From
Claims 12 and 14 it follows that y12e ¢ D and x9y; € D. Therefore, A(R — {1, 22}) = 0.
If n = 5, then xy1,x3y1 € D which contradicts Claim 13. Assume, therefore, that n >
6. As D is strong, there is a vertex x; with [ € [3,n — 2| such that d~(z;, R) > 1 (say
y,; € D) and A(R — Clzy,2,-1]) = 0. Then the vertices x;_1,y, are nonadjacent and
d(zi—2, R) = 0 (by x1_2y3—4 ¢ D and by Claim 12). Now, since z,_oy; and x2y1 € D, there
exists a vertex z, € Clx,_o,2,_3] (if | = 3, then x,,_» = x;_3) such that d*(z,, R) > 1 and



22 On pre-Hamiltonian Cycles in Hamiltonian Digraphs

A(R,C[xy41,m1-2]) = 0. This contradicts Claim 3 since d~ (z;-1, R) = 0 and d~(x;, R) > 1.
Claim 15 is proved.

Claim 16: If z;y; € D, where i € [1,n — 2| and j € [1,2], then y;x;12 € D.

Proof of Claim 16: Without loss of generality, we may assume that z; = =, o and
y; = y1. Suppose that the claim is not true, that is x,_oy; € D and y122 ¢ D. Then, by
Claims 13 and 14, the vertices y;,x; are nonadjacent, xoy; € D (hence, n > 6) and y;, x5
are also nonadjacent. From this, by Claim 15 we obtain that the vertex s is adjacent to the
vertices xy and x3. Therefore either ysx3 € D or x3y, € D.

Case 16.1. yox3 € D.

Then 5,1y, are nonadjacent (by Claim 13), xexqy € D and 1y, ¢ D by Claim 12 (for
otherwise D would have a cycle C” of length n — 2 for which (V' (D) — V(C")) is not strong).
Notice that ypz; € D (by Claim 15). Since neither y; nor ys can be inserted into C, y;xo ¢ D
and yi, z; are nonadjacent (respectively, z1y, ¢ D and ys, x5 are nonadjacent) using Lemma
3.2(ii), we obtain that

diyy) <n—1 and d(y2) <n-—1. (18)

It is not difficult to see that x,_sxs ¢ D and z123 ¢ D (for otherwise D contains a cycle
of length n — 1). Therefore, since neither x; nor zo cannot be inserted into C|xs, ;2]
(otherwise we obtain a cycle of length n — 1), again using Lemma 3.2(ii), we obtain

d(z;) <n—1 and d(zy) <n-—1. (19)
It is easy to check that n > 7.

Remark: Observe that from (18), (19) and Lemma 3.5 it follows that if x; # x; and
Y1, T; are nonadjacent or x; # T and x;, Yo are nonadjacent, then d(z;) > n.

Assume first that d*(y1,Clzs, z,—2]) > 1. Let x;, | € [4,n — 2], be the first vertex
after x3 that yy2; € D. Then the vertices y; and x;_; are nonadjacent. Therefore, 1,
and x;_o are adjacent (by Claim 14) and hence, x; oy; € D because of zoy; € D and
minimality of [ (I —1 # 4 by Claim 14, since x5y, € D). Since z;_; cannot be inserted
into C|x, /_2], using Lemma 3.2 and the above Remark, we obtain that d(z;—1) = n and
hence, d(y;) = n — 1 (by Lemma 3.5). This together with d(y1, {x1, z2, 23,y2}) = 3 implies
that d(y1,Clxs, Tn—2]) = n — 4. Again using Lemma 3.2, we obtain that y1z4 € D (since
|C[z4, X, _s]| = n —5). Thus, y;Clxy, z5]y; is a cycle of length n — 2. Therefore, x5y, € D
(by Claim 12), yy25 ¢ D and the vertices ys,z4 are nonadjacent (by Claim 13). From
y1xs ¢ D (by Lemma 3.2) we obtain that d(y;, Clzs, ,_5]) < n—6. Therefore x,y; € D and
d(y1, Clxs, xp—2]) = n — 6. Now it is easy to see that y;, x5 are nonadjacent (by Claim 13)
and y9, x5 are adjacent (by Claim 14). Therefore, d(y1, C|xg, Tn—2]) = n — 6 and y126 € D
(by Lemma 3.2), yox5, 25y2 € D (by Claim 12), yy27 ¢ D (by Claim 13). One readily sees
that, by continuing the above procedure, we eventually obtain that n is even and

N_(yl) = {y2,$2,$4,$67 e 7%—2}7 N+(y1) = {3/2735473567 e 7%—2},

N_(yg) = {y1,$3,$5, Ce ,.I'n_g}, N+(y2) = {y1,$1,$3,$5, Ce ,.I'n_g}.

From Claim 12 it follows that z;x; 1 € D for all i € [4,n — 2] and zox; € D. It is easy to
see that z123 ¢ D and xsxs ¢ D. Therefore, since x3 cannot be inserted into C|zs, x|, by
Lemma 3.2, we have d(z3, C[zs,x1]) < n — 6. This together with d(z3) > n (by Remark)
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implies that d(zs, {z2,x4,y2}) = 6. In particular, xz3x2 € D. Now we consider the vertex
Zp—2. Note that d(z,-2) > n (by Remark), z, oxo ¢ D and x, 42,2 ¢ D. From this it
is not difficult to see that d(z,_2, Cre, xy—4]) < n —6 and z12, 9 € D. It follows that
Tp_oTp_3 ... T4T3YaX1Ty,_o is & cycle of length n — 2, which does not contain the vertices
and xo. This contradicts Claim 12, since y;x9 ¢ D (by our supposition), i.e., ({y1,z2}) is
not strong.

Assume next that d*(y1, C[z4, xn—2]) = 0. Then from Claims 13 and 14 it follows that

N~ (y1) = {92, 22,74, .. ,252} and N (y) = {p:}. (20)

By Claim 15 we have that the vertex y» is adjacent to each vertex z; € {x1,23,..., 2,3}
It is easy to see that x,_sy» ¢ D and hence, yox,_3 € D (for otherwise if x,,_3y» € D, then
y2Cx1, xp—3]ye is a cycle of length n — 2, but ({x,_2,71}) is not strong, a contradiction to
Claim 12). By an argument similar to that in the proof of (20) we deduce that

N+(y2) = {ylal.lal.?n s 7'1.71—3} and N_(yQ) = {yl}

Thus we have that y,y.C[z5, 2]y, is a cycle of length n — 2 and z3 cannot be inserted into
Clzs,xs]. Therefore, by Lemma 3.2(ii), d(z3, Clzs, x2]) < n — 4 since xszs ¢ D. This to-
gether with d(x3,{z4,y1,72}) < 3 implies that d(z3) < n — 1 which contradicts the above
Remark that d(z3) > n.

Case 16.2. yoxs & D.

Then, as noted above, x3ys € D. Therefore d(ys, {z2,x4}) = 0 (by Claim 13 and ysz2 ¢
D), yyxy ¢ D (by Claim 12), x4y, € D (by Claim 15), the vertices xs,; are nonadjacent
and the vertices y,, x5 are adjacent (by Claim 15). Since x3ys € D, 1124 ¢ D and yo, x5 are
adjacent, from Claim 12 it follows that y.z5 ¢ D and x5y» € D. For the same reason, we
deduce that

N~ (y1) = {y2, T2, 4, . .., Xyo} N (y2) = {y1,21,23,...,2,_3} and A(R — V(C)) =1,
which contradicts that D is strong. This contradiction completes the proof of Claim 16. o

We will now complete the proof of Theorem by showing that D is isomorphic to K 5, o.
Without loss of generality, we assume that x,,_sy; € D. Then using Claims 12, 13, 14 and
16 we conclude that y;, z; are nonadjacent (Claim 13), 1125 € D (Claim 16), x1ys, yoz1 € D
(Claim 12), z9,y also are nonadjacent (Claim 13), yoz3 € D (Claim 16) and z3y; € D
(Claim 12). By continuing this procedure, we eventually obtain that n is even and

N+(y1) =N"(y1) = {y2, 29, 24,..., 2,2} and N+(y2) = N"(y2) = {y1, 21, 23,...,Tn_3}.

If z,2; € D for some z;,2; € {z1,23,...,T,-3}, then clearly |Clz;,z;]] > 5 and
TiTjTiq1 - Tic11Tit1 - .- Tj_2Yo%; is a cycle of length n — 1, contrary to our assumption.
Therefore, {y1,x1,23,...,2, 3} is an independent set of vertices. For the same reason
{Ya2, T2, T4, ..., x, o} also is an independent set of vertices. Now from the condition A

it follows that D is isomorphic to K7, 5, 5. This completes the proof of Theorem 1.10.
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5.

On pre-Hamiltonian Cycles in Hamiltonian Digraphs

Concluding Remarks

A Hamiltonian bypass in a digraph is a subdigraph obtained from a Hamiltonian cycle of D
by reversing one arc.

Using Theorem 1.10, the first author has proved that if a strong digraph D of order n > 4

satisfies the condition A, then D contains a Hamiltonian bypass or D is isomorphic to one
tournament of order 5.
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Unnuilnpngwo hwihjnnbjwl qpudltiph Guwuwhwdhjnnbywb
ghlyitiph dwuhd

U.%wpphGjuG L b. Qupuwbwnjwb
Udthnthnid

Unnulnpnpywo gnubh YnnilGnpnpdwo ghyp, npl wlglmy L Gpw pninp ququplbpny,
pwgh vtyhg, Ynsynd kL GwhowhwihpmnbyuG ghy: btpyu wuwnmwipmy wyugnigyud
L, np Gpb YnniGnpnpgwo qpudbp pwjwpwpmd £ Uwlnnuwlhuh hwdhjmGyuGmpjul
pwjuwpwp wuwydwbhG (J. of Graph Theory 16(1) (1992) 51-59), wwyw wjl wywpniGuynid
b GwhuiwhwihpnnGyuG ghy), pwgh wjl nbwphg, tpp wyn qpudp hqninpd b tplydwu
hwjwuwnpwlnwo YnnuilGnpnpyuo inhy qpudha:

O npeAraMUABTOHOBBEIX KOHTYPaX B FaMUABTOHOBEIX
OPUEHTUPOBAHHEIX Irpafax

C. Aap6unsan u U. Kapanersan

AnHoTanus

OpueHTUPOBAHHBIN KOHTYP, KOTOPHIM COAEP’KUT BCE BEPIIUHBI OPUEHTUPOBAHHOT'O
rpadpa (oprpada), Ha3bIBAeTCd IPEATraMHUABTOHOBBIM KOHTYPOM. B pabore
AOKAa3aHO, 4TO AIOOOM oprpad, KOTOPBIM YAOBAETBOPSET AOCTAQTOYHOMY YCAOBUIO
raMuABTOHOBOCTU oprpadoB Manoycakuca (J. of Graph Theory 16(1) (1992) 51-59),
COAEPKUT IIPEATaMUABTOHOBBIM KOHTYP UAM IBAIETCSI ABYAOABHBIM OaA@HCHUPOBAHHBIM
IIOAHBIM Oprpadg oM.



