Mathematical Problems of Computer Science 42, 81--84, 2014.

Resear ch and Deployment of Improved Web Server
Protection Methods

Arthur S. Petrosyan and Gurgen S. Petrosyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: arthur@sci.am, gurgen@sci.am

Abstract

Since the World Wide Web service remains the most widely used internet service,
the protection of Web Servers becomes more and more important, especiadly in view
of vulnerahility, being found from day to day. This article describes the research work
done in Academic Scientific Research Computer Network of Armenia (ASNET-AM)
managed by the Institute for Informatics and Automation Problems (I1AP) of the
Nationa Academy of Sciences of the Republic of Armenia (NAS RA), targeted to the
research and deployment of the improved methods for Web server protection. Specia
attention was given to obtaining the best solution for Web server protection methods in
Apache/PHP-based Shared Web Hosting Environment.

Keywords. WWW, Web Hosting Environment, Web Server, Apache, PHP.

1. Introduction

In a Shared Web Hosting Environment, different hosted websites share the whole server but each
client has its own set of resources. A number of websites share a single server. It is an economic
solution for those websites which do not have high traffic and high storage requirements. In such
shared hosting environment everything that interacts with a server is a threat to any of the hosted
websites.

The following analogy helps understanding the issues of shared hosting environment. A
shared server is like an apartment building, where all the resources like water supply, power
supply, parking lot, etc. are shared with other people in the apartment building. In case of water
or power supply failure, every apartment faces the impact. Similarly in shared web hosting, the
web server software (Apache HTTP Server Project [1]), requires a control over the files to be
served to the client which immediately poses a security concern. If the domains have an ability to
run scripts or if the domains have an access to the shell, then in shared hosting environment, one
client can modify the files of another client. Though in a multiuser operating system like Linux
read/write/execute, privileges can be provided to different user groups (user/group/other) yet
through a simple PHP script, files outside the own home directory can be accessed. This is

81



82 Research and Deployment of Improved Web Server Protection Methods

because in default web server configuration all hosted websites are served from the same
username/UID and, thus, have the same privileges at the operating system level. Even when
using pre-packaged software solutions, you need to allow the hosting server to have read, write
and execute access to your files and, thus, expose vulnerability to other clients.

Moreover, though the PHP functions like exec(), shell_exec() provide flexibility to the
developers, yet they pose adverse security problems. Most of the websites require some image
uploads from the web and if the client on shared hosting does not have a server permission then
these uploads will not move to the destination directory. The common solution is to give all the
users 777 (read/write/execute) access to the destination directory. Thisis a common solution but
what it has provided is an easy way to hack the files of other users sharing the same server.

2. Restriction on PHP Levd

An important PHP feature, which can be helpful in shared hosting environment, is open_basedir.
It can be used to limit the files that can be accessed by PHP to the specified directory-tree,
including the file itself. When some PHP script tries to access the filesystem, for example using
include, or fopen(), the location of the file is checked. When the file is outside the directory-tree,
specified within the ‘open_basedir’, PHP will refuse to accessiit.

The typical ‘open_basedir’ setting should be:

open_basedir = /tmp/:/variwww/

Thiswill protect the other system directories from accessing by any PHP script.

But the problem is that the ‘open_basedir’, which is generally set in the PHP global
configuration file “php.ini’, can be overridden in the local .htaccess file at the directory level, in
case the Apache web server ‘AllowOverride’ setting is set to “All’ or at least ‘Options’, and even
within the PHP script (using the function “ini_set()’). Thus, the use of ‘open basedir’ in this
configuration does not produce the desired effect.

Also setting ‘open_basedir’ in the “php.ini’ file globally for the entire web server, will only
help to protect external system directories. But the neighboring websites using the same shared
web server will still be able to access each other’s directories at PHP script level. It means that in
case the website is broken, other website data will be potentially available to the intruder too.

The solution to the above issue is to define ‘open_basedir’ as so called php_admin_value.
PHP documentation shows the settings defined as ‘php_admin_value’ can’t be overridden in
“.htaccess’or “ini_set()’ [2]. Even more, ‘open_basedir’ can be defined as ‘php_admin_value’ for
each virtual host separately, so the issue mentioned above will be solved and we will get a
separate ‘open_basedir’ setting, determined for each website (virtual hosting), which can’t be
changed from “.htaccess’ or “ini_set()’.

In thisway it is possible to determine a separate PHP scripts execution area for each hosted
website, so that it does not have access to the whole system, and even to files of neighboring
websites using the same shared web server.

Although PHP Developer Team is mentioning that the use of ‘open basedir’ feature is “a
convenience to system administrators and should in no way be thought of as a complete security
framework” [3], using the ‘open_basedir’ helpsto limit the potential threat area.



A. Petrosyan and G. Petrosyan 83
3. Filesystem Permissions Level Protection

PHP level restrictions described above are good enough in case of proper configuration. But to
obtain the best solution for Web server protection in shared hosting environment it would be
important to have additional protection on the filesystem permissions level. This task can be
implemented in different ways and as a result of research work done in ASNET-AM to deploy
the improved methods for Web server protection the package Apache 2 ITK MPM was chosen to
be most effective [4]. Apache 2 ITK MPM (just mpntitk for short) is a Multi-Processing Module
(MPM) for the Apache web server. mpmritk allows to run each of the virtual websites under a
separate UserID (UID and GrouplD (GID). This means, that a desired additional protection on
the filesystem permissions level can be obtained.

The typical ‘mpm_itk_module’ setting for each virtualhost in Apache configuration should
include:

<IfModule mpm_itk_module>

AssignUserld userl groupl

</IfModule>

This will force Apache wer server to fork a process with 'userl’ and 'groupl’ for serving
requests to this website.

As a result the neighboring websites using the same shared web server will not be able to

access either each other’s directories, or the system directories, based on the filesystem
permissions.
This solution can be counted much more effective, since it provides protection on a system level
and, thus, not only PHP, but any scripts and configuration files for one virtual website no longer
is accessible for al the others. It means that in case any website is broken, only this website data
will be available to the intruder.

An important note on mpm-itk usage is that it is based on prefork method and not threads,
(i.e., extrafork is done per request). On one hand, it means that mpm-itk can support running a
non-thread-aware code (like many PHP extensions) without problems. On the other hand, mpm-
itk performance is lower when compared with threads. But our decison was to have less
performance benefits and gain a more powerful method of protection on the filesystem
permissions level.

4. Conclusion

Deployment of the improved methods for Web server protection includes implementation of
multilevel security means. Thus, the best solution for Web server protection in Apache/PHP-
based Shared Web Hosting Environment can be described as a combination of properly
configured open_basedir PHP level restrictions and additional protection on the filesystem
permissions level with modules like mpmritk.

References

[1] Apache HTTP Server Project, [Onling]. Available: http://httpd.apache.org
[2] Description of core php.ini directives, [Onling]. Available:
http://php.net/manual/en/ini.core.php



84 Research and Deployment of Improved Web Server Protection Methods

[3] A Note on Security in PHP, [Onling]. Available:  http://php.net/security-note.php
[4] Apache 2 ITK MPM, [Online]. Available: http://mpm-itk.sesse.net/

Submitted 29.07.2014, accepted 27.11.2014.

JEp ubpybpubph yquonywinipjut pupkjwyjwsd dkpnnutph
hEwnwgnunnipinii b Uowlnid

U. MEnpnujut b G. Mhwnpnuywb
Udthnthnd

Lwh np World Wide Web (Zwdwppiuphwjhti vwpnnuiwjuh) Swnwjnipjniup
wnwugpujhtt nkp niuh ubkpluwjhu gwbgujhtt wnkjuuninghwubtph nnpunud, Jhp
ubpybputph wuwonwwinmpniip jiuwlwt tpwbwlnipni nith: Zwodh weubing
Jtpohtt wwphubphtt jut  nwpwdnid  uwnwugws Jhp  ubpybkpubpht nmndus
hwpdwlnidutpp, swwn Juplnp tu pununid World Wide Web Sswnwjnipjut
yuonwwinipjub wppnibwybn dkpnnubph dowlnid nt tkpppnudnp:

znpudnid  jupugpjus  Eu ASNET-AM - Zwjuunwth  wiunpbdhwulub
ghnnwhbnwgnuuljut §nduynunbpuihtt gwugnid junwpduws ntuntdbwuhpnipjui
wpyniupubpp, npnig twuwwunwliu b dowll) JEp ubkpdbpubph wuwonwywinipjut
wpynitwybn dbkpnnukp:

VccnepoBaHue v peannsaumsa yiy4dlleHHbIX METOA0B
3alNTbl BEO cepBepoB

A. TeTpocaH u I". MNeTpocsaH

AHHOTauus

Ycnyra World Wide Web (BceMUpHOIn nayTUHbI) SABNSIETCS KHOYEBOW B COBPEMEHHOM
MUpe CeTeBblIX KOMMYHWMKauWi, MO3TOMY 3awiuta BeO CepBepoB WMEET XKM3HEHHO BaXXHOe
3HayeHMe. B cBA3M C pas3nnyHbIMKX (popMamMun aTak Ha Beb caliTbl, BHeApeHME 3PQEKTUBHbIX
METOLOB 3aLUuTbl Be6 CEPBEPOB CTAHOBUTCH OYEHb BaXKHbIM.

B cTaTbe onucaHbl MCCnefoBaHNs, Hanpas/ieHHble Ha onpegeneHune aheKTUBHbLIX Croco60B
3aWmTbl OT atak Ha Be6 caiTtbl. [lMpeAcTaBneHbl pe3ynbTaTbl HAaYYHO-WUCCNEeLOBATE/IbCKO
paboTbl, NPOAeNnaHHON B AKafeMUYecKOon Hay4YHO-WCC/ef0BaTe/lbCKON KOMMbIOTEPHON CeTw
ApmeHun (ASNET-AM), HanpaBneHHble Ha MPUMEHEHWE YNyUdLleHHbIX METOAO0B 3alnTbl BEO
cepeepoB. Ocob0oe BHUMaHWe YAeNneHO OMpeseNieHNI0 Haunyyllero pelleHns Ana 3awmTbl Be6
CEepBEPOB B Cpefie BUPTYasbHOIO pas3fensieMoro XOCTWMHra, Ha OCHOBE MPOrpamMMHbIX MakeToB
Apache/PHP.



