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Abstract

A total coloring of a graph G is a coloring of its vertices and edges such that no
adjacent vertices, edges, and no incident vertices and edges obtain the same color. An
interval total t-coloring of a graph G is a total coloring of G with colors 1,...,t¢ such
that all colors are used, and the edges incident to each vertex v together with v are
colored by dg(v) + 1 consecutive colors, where dg(v) is the degree of a vertex v in G.
In this paper we prove that all complete multipartite graphs with the same number of
vertices in each part are interval total colorable. Moreover, we also give some bounds
for the minimum and the maximum span in interval total colorings of these graphs.
Next, we investigate interval total colorings of hypercubes @,,. In particular, we prove
that @, (n > 3) has an interval total ¢-coloring if and only if n +1 <t < w

Keywords: Total coloring, Interval total coloring, Interval coloring, Complete
multipartite graph, Hypercube.

1. Introduction

All graphs considered in this paper are finite, undirected and have no loops or multiple
edges. Let V(G) and E(G) denote the sets of vertices and edges of G, respectively. Let
VE(G) denote the set V(G)U E(G). The degree of a vertex v in G is denoted by dg(v), the
maximum degree of vertices in G by A(G) and the total chromatic number of G by x”"(G).
For S C V(G), let G[S] denote the subgraph of G induced by S, that is, V(G[S]) = S and
E(G[S]) consists of those edges of E(G) for which both ends are in S. For F' C F(G), the
subgraph obtained by deleting the edges of F' from G is denoted by G — F. The terms and
concepts that we do not define can be found in [1, 20, 21].

Let |a] denote the largest integer less than or equal to a. For two positive integers a and
b with a < b, the set {a,...,b} is denoted by [a,b] and called an interval. For an interval
la,b] and a nonnegative number p, the notation [a, b] & p means [a + p, b+ p|.

A proper edge-coloring of a graph G is a coloring of the edges of G such that no two
adjacent edges receive the same color. If v is a proper edge-coloring of G and v € V(G), then
S (v, ) denotes the set of colors appearing on edges incident to v. A proper edge-coloring
of a graph G is an interval t-coloring [2] if all colors are used, and for any v € V(G), the
set S (v, ) is an interval of integers. A graph G is interval colorable if it has an interval
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t-coloring for some positive integer t. The set of all interval colorable graphs is denoted by
N. For a graph G € N, the least (the minimum span) and the greatest (the maximum
span) values of ¢ for which G has an interval ¢-coloring are denoted by w(G) and W (G),
respectively. A total coloring of a graph G is a coloring of its vertices and edges such that
no adjacent vertices, edges, and no incident vertices and edges obtain the same color. If «
is a total coloring of a graph G, then S [v, a] denotes the set S (v, a) U{a(v)}.

A graph K,, ., is a complete r-partite (r > 2) graph if its vertices can be partitioned
into r independent sets V1, ..., V, with |V;| = n; (1 <i < r) such that each vertex in V; is
adjacent to all the other vertices in V; for 1 <i < j <r. A complete r-partite graph K,, _,
is a complete balanced r-partite graph if |Vi| = [Vo| = --- = |V,| = n. Clearly, if K,, , is a
complete balanced r-partite graph with n vertices in each part, then A(K,,  ,) = (r — 1)n.
Note that the complete graph K,, and the complete balanced bipartite graph K, ,, are special
cases of the complete balanced r-partite graph. The total chromatic numbers of complete
and complete bipartite graphs were determined by Behzad, Chartrand and Cooper [3]. They
proved the following theorems:

Theorem 1: For any n € N, we have

" | n, if mis odd,
X' (Kn) = { n+1, ifn is even.

Theorem 2: For any m,n € N, we have

" | max{m,n}+1, ifm#n,

A more general result on total chromatic numbers of complete balanced multipartite
graphs was obtained by Bermond [4].

Theorem 3: For any complete balanced r-partite graph K, . (r > 2,n € N), we have

-----

(K, ) = (r—=1)n+2, ifr=2orriseven andn is odd,
X ABnn) = (r—1)n+1, otherwise.

An interval total t-coloring of a graph G is a total coloring a of G with colors 1,...,¢
such that all colors are used, and for any v € V(G), the set S [v, a] is an interval of integers.
A graph G is interval total colorable if it has an interval total ¢-coloring for some positive
integer t. The set of all interval total colorable graphs is denoted by 7. For a graph G € 7,
the least (the minimum span) and the greatest (the maximum span) values of ¢ for which G
has an interval total ¢-coloring are denoted by w, (G) and W, (G), respectively. Clearly,

X" (G) <w, (G) < W, (G) < |V(G)|+ |E(G)] for every graph G € 7.

The concept of interval total coloring was introduced by Petrosyan [5]. In [5, 6], the
author proved that if m 4+ n + 2 — ged(m,n) <t < m +n+ 1, then the complete bipartite
graph K, , has an interval total ¢-coloring. Later, Petrosyan and Torosyan [18] obtained
the following results:

Theorem 4: For any m,n € N, we have

_Jmtn+l, ifm=n=1,
WT(Km,n) { m+n+27 otherwise.
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Theorem 5: For any n € N, we have

(1) K,,eT,
(2) wr(Knn) = X"(Kpn) =n+2,

2+, ifn=1,
(3) Wr(Knn) { Mm+2, ifn>2,

(4) if wr(Knp) <t < Wi (Kpp), then K, has an interval total t-coloring.

In [6], Petrosyan investigated interval total colorings of complete graphs and hypercubes,
where he proved the following two theorems:

Theorem 6: For any n € N, we have
(1) K, €T,

@) wnirc) - {
(3) Wo(K,) =2n—1.

. ifnis odd,
n, ifn is even,

vl I

Theorem 7: For any n € N, we have

(1) QneT,
(2) w-(Qn) = X"(Qn) = { Zi? ZZZ § g

(n+1)(n+2
(3) WT(QR) 2 #;
(4) if w(Qn) <t < (”—Hw, then @, has an interval total t-coloring.

Later, Petrosyan and Torosyan [18] showed that if w,(K,) < t < W.(K,), then the
complete graph K, has an interval total t-coloring. In [13], Petrosyan and Shashikyan
proved that trees have an interval total coloring. In [14, 15, 16], Petrosyan and Shashikyan
investigated interval total colorings of bipartite graphs. In particular, they proved that
regular bipartite graphs, subcubic bipartite graphs, doubly convex bipartite graphs, (2,b)-
biregular bipartite graphs and some classes of bipartite graphs with maximum degree 4 have
interval total colorings. They also showed that there are bipartite graphs that have no
interval total coloring. The smallest known bipartite graph with 26 vertices and maximum
degree 18 that is not interval total colorable was obtained by Shashikyan [19].

One of the less-investigated problems related to interval total colorings is a problem
of determining the exact values of the minimum and the maximum span in interval total
colorings of graphs. The exact values of these parameters are known only for paths, cycles,
trees [13, 14], wheels [10], complete and complete balanced bipartite graphs [5, 6, 18]. In
some papers [8, 11, 12, 17] lower and upper bounds are found for the minimum and the
maximum span in interval total colorings of certain graphs.

In this paper we prove that all complete balanced multipartite graphs are interval total
colorable and we derive some bounds for the minimum and the maximum span in interval

total colorings of these graphs. Next, we investigate interval total colorings of hypercubes
Q.. and we show that W, (Q,) = w for any n € N.
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2. Interval Total Colorings of Complete Multipartite Graphs

We first consider interval total colorings of complete bipartite graphs. It is known that
Ky € T and w, (K pn) < m+n+2—ged(m,n) for any m,n € N, but in general the exact
value of w; (K, ) is unknown. Our first result generalizes the point (2) of Theorem 5.

Theorem 8: For any n,l € N, we have w, (K1) = X" (Knni)-

Proof:  First of all let us consider the case [ = 1. By Theorem 5, we obtain w, (K, ,) =
X" (Kpnn) =n+ 2 for any n € N.

Now we assume that [ > 2.

Let V (Kypit) = {1, .o Un, 01, ..o, U} and B (K, 50) = {wvj| 1 <i<n,1 <j<n-l}.
Also, let G = K, [{u1, ..., un,v1,...,0,}]. Clearly, G is isomorphic to the graph K, ,.

Now we define an edge-coloring « of G as follows: for 1 <i <mn and 1 <j < n, let

Oé(uwj)_{ i+j—1 (modn), %fz:—l—j:zén—l—l,
n, ifi+j=n+1.

It is easy to see that « is a proper edge-coloring of G and S(u;, &) = S(v;, ) = [1,n] for
1< <n.

Next we construct an interval total (n-[+1)-coloring of K, ;. Before we give the explicit
definition of the coloring, we need two auxiliary functions. For ¢ € N, we define a function
f1(@) as follows: fi(i) = 14+ (i —1) (mod n). For j € N, we define a function f5(j) as
follows: fa(j) = [%J

Now we are able to define a total coloring 3 of K, ..

For 1 <17 <mn, let

Blu;) =n-1+1.
For 1 <j<n-I let

B(v;) = n+1, if1 <j<mn,
YT ne k), ifn+l<i<n-l

For1<i<nand1<j<n-I[ let
Bluiv;) = a (up@ung) +n- f2(7)-

Let us prove that 3 is an interval total (n - [ 4 1)-coloring of K, ;..
By the definition of # and taking into account that S(u;,a) = S(v;, ) = [1,n] for
1 <1 < n, we have

Sfui, ) = S(us, B) U{B(u:)} = (Uhet S (s @) @ nlk — 1)) U {B(us)} =
=[Ln-lJu{n-l+1}=[1,n-1+1]for 1 <i<n,
S, 8] = S(vj,a) U{B(v;)} = [I,n]U{n+1} =[1,n+1] for 1 <j <n, and
S[vj, 8] = S(v;, B) U{B(v;)} = (S (vflm ) @n- f(5)) U{Bv,)} =
= [l n-fo(G)n+n- LU L)} =0 fol)n+n L) forn+1<j<n-1
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This shows that /3 is an interval total (n-l+1)-coloring of K, ;. Thus, w, (K ) < n-l+1.
On the other hand, by Theorem 2, w, (K1) > X" (Knni) =n -1+ 1 for I > 2 and hence,
wT(Kmn.l) = X”(Kn,n~1)- [ |

Next, we show that the difference between w,(K,,,) and x”"(K,,,) for some m and n
can be arbitrarily large.

Theorem 9: For anyl € N, there exists a graph G such that G € T and w.(G)—x"(G) > L.

Proof: Let n =1+3. Clearly, n > 4. Consider the complete bipartite graph K, 2, with
bipartition (X,Y), where |X| =n+1{ and |Y| = 2n. By Theorem 2, we have x"(K,yi2,) =
2n + 1.

By Theorem 4, we have K2, € 7. We now show that w, (K, 1;2,) > 2n+ 1+ 1.

Suppose, to the contrary, that K, ; 2, has an interval total ¢-coloring «, where 2n 41 <
t<2n+1.

Let us consider S[v, a] for any v € V(K ,,412,). It is easy to see that [t —n—1,n+1+1] C
Slv,al for any v € V(Kp12,). Since t < 2n + [, we have [n,n + [ + 1] C S[v,a| for any
v € V(Kpti2n). This implies that for each ¢ € [n,n + [ + 1], there are n — [ vertices in
Y colored by ¢. On the other hand, since |Y| = 2n, we have 2n > (I 4+ 2)(n — [), which
contradicts the equality n = [ + 3.

This shows that w, (K, 12,) > 2n+14+1. We take G = K,,1;2,. Hence, w,(G)—x"(G) > L.
|

Now we consider interval total colorings of complete r-partite graphs with n vertices in
each part.

-----

Proof:  First let us note that the theorem is true for the case r = 2, since w, (K, ,) =
X" (Knn) =n+ 2 for any n € N, by Theorem 5.

Now we assume that r is even and n is odd. Clearly, for the proof of the theorem, it
suffices to prove that K,, _,, has an interval total ((%7’ — 2) n+ 2)—coloring.

-----
-----

-----

Define a total coloring o of K,, _,,. First we color the vertices of the graph as follows:

-----

04(1)](»1)):1for1§j§nanda(vj(»2)):(7’—1)”+2f01"1§j§“7

O‘(UJ(’HI)):(i_l)”“‘lfOfQSiSg—landlgjgn’
O‘(“ >_(7’+i—2)n+2f0r2§i§g—1and1§j§n,

a(vj(»r_l)):(g—l)n—i-lfor1§j§nanda(v§»r)): (gr—Z)n—i—QfOl"lSan-

Next we color the edges of the graph. For each edge v()0l) € E(K,, . ,) with

-----

1<i<j<randp=1,...,n,q=1,...,n, define a color « (Uz(f)v(gj)) as follows:
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fori=1,...,|%,7=2,...,5, i+ <Z+1, let
1 2 2
: L 1+ (p+q—1) (modn), ifp+qg#n+1
(Dy0)) = _ ) )
a(vpv ) (i+7 3)n+{n+1’ it p+g=ntl:

fori:Z,...,%—l,j:[ﬂ—i—Z,...,g,i—i—jzg—i—Z,let

N G L 1+ (p+q—1) (modn), ifp+qg#n+1
(1)) = r_ ) )
a(v V) ) (Z+]+2 4)71—1—{“_’_1’ ifp+q=n+1;

fori=3,...,5,j=5+1,.. —2,7— — 2, let

N G . 1+(p—i—q—1) (mod n), ifp+qg#n+1
(@) = (r i ) )
a(v v ) ( +J—1 1)71—1—{”_’_1’ ifp+qg=n+1;

N G . 1+(p—i—q—1) (mod n), ifp+g#n+1
@y = (4 — ) )
a(vpv ) (j—i— 1)n+{n+1’ fptq=n+l:

fori=2.. 14|22 j=5+1. . 5+ i—i=5-11let

N (d 1+ (p+q—1) (modn), ifp+qg#n+1

D)) = (95 — , ,
a () = (2i 3)"+{n+1, ifp+qg=n+1;
for i = [%J+2,...,g,j:g+1+[%J,...,T—Lj—i:g—L let

o 1+(p+q—1) (modn), ifp+qg#n-+1,
(Z+J_3)n+{n+1, ifp+qg=n+1;

fori=5+1,.. . 5+ 5 -1 i=5+2.. r—2i+j<3r—1let

o
—
4

<
)
<
_R
=
~—
|

)G L 1+(p+q—1) (modn), ifp+qg#n+1

(D)) — . : :
o (o) = i+ —r 1)n+{n+1, ifp+qg=n+1;
fori=§+1...,r—1j=5+ 7| +1...ori+j>3r let

o o l+(p+q—1) (modn), ifp+qg#n+1
(1)) = _r_ ) )
o (ou) = (i 45— & 2)n+{n+1’ ptgnil

-----

First we show that for each ¢ € [1, (%7’ —2)71—1—2}, there is ve € VE(Kn _____ n) with
a(ve) = c.
(1)

Consider the vertices vy’ and UY). By the definition of «, we have

S[Uﬁl),a} S(Ul : ) {a(g )} ( 1([2,n+1]69(l—1)n))u{1}

=02,(r—1)n+1JU }—[ (r—1)n+1] and
S[Ugr),a]fS(vy),) { ( )} ( 2n+1]69(l—1)n)>u{(
= (5-1)n+2(3r-2)n+1]u {(gr—z)n+2}:[(g—1)n+2,(
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It is straightforward to check that S [Ul , } us [Ul , } = [1, (%7’ — 2) n+ 2}, so for

each c € [1, (57’ — 2) n+ 2}, there is ve € VE(K,, ) with a(ve) = c.

Next we show that the edges incident to each vertex of K, ., together with this vertex
are colored by (r — 1)n + 1 consecutive colors.

Let v\ € V(K, __,), where 1 <i<r, 1<j<n.

Case 1. 1 <1 <2, 1 <5< n.

By the definition of o, we have

S [Uj(»l),a} =S (Uﬁ»l),&) U {04 (U§1 )} (U L2,n+ 1] (- 1)n)) U{l} =

, :[2,(7’—1)271+1]U{1} [1,(r —1)n+ 1] and
S [oi%sa] = 8 (%,0) ufa (v”)}
=[2,(r—1)n+1JU

-----

Uzl (2n+ 1@ —1n) uf(r—1)n+2} =
r—1n+2}=102,(r—1)n+2].

{(
Case 2. 3<i<g, 1<5<n.
By the definition of «, we have

S[ 2 a}fS(v() a)U{a(v )}

j )

=[(1—=2n+2,(r—3+in+1]

(U35 (2 + 1 (- Dn) UG —2Dn+ 1} =
{i—=2n+1}=[(i—2)n+1,(r—34+0)n+1].

U
Case 3. ; +1<:1<r—-2,1<j<n.
By the definition of o, we have

S[Uj(»i),a] = S(Uj(»i),&) U{@ (UY))} =
(UL (n+ e -1m) u{(3
[(i-5)n+2 (5+i-n+1]u{(5+i-1)n+2

Case 4. r—1<i<r,1<j5<n.
By the definition of «, we have

S [U(»r_l),a} =S (U(»r_l),a) U {04 (U(»r_l))} =

J J

@(l—l)n)>u{(gr—2)n+2}—
2 (g

\_/
+
(N}

\—/|—|
O
=5
o
=
=
OS]
o
=
&

This shows that « is an interval total (( r—2
T and w, (K, ) < (57' — 2) n+2. M

----------

-----

Note that the upper bound in Theorem 10 is sharp when r = 2 or n = 1. Also, by
Theorem 10, we have that if » = 2 or r is even and n is odd, then K, , € 7; otherwise,

Ky n€Tandw, (K, ) =X"Kn. n)=(r— 1)n+ 1. Our next result gives a lower bound

-----

-----

-----
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Proof: We consider two cases.
Case 1: 7 is even. A
Let V(K ) ={vj’] 1 <i<r1<j<n}and

-----

Define a total coloring « of K,, _,. First we color the vertices of the graph as follows:

-----

a(vf))=jfor 1<j<nanda(v)=(—Dn+1+jforl1<j<n,
O‘(UJ(HI)):(i_l)”+jf0f2§i§£—1and1§j§n’

(3+i—1)
j

&(Uﬁr—l)):(g 1)n+jfor1<j<nanda( ) (% — )n—l—l—i—jforlgjgn.

a =(r+i—-2n+1+jfor2<i<Z—1land1<j<n,

Next we color the edges of the graph. For each edge v{)0l) € E(K,, . ,) with

-----

1<i<j<randp=1,...,n,q=1,...,n, define a color a (U;(f)vc(,j)) as follows:

fori=1,...,|5,j=2....5i+j

fori=2,...,5—1,5=[5/+2,...,5i+j>5+2 let
a(v(i)vc(lj)):(i—l—j—l—g—ll)n—i-p—i-q;
fori=3,...,5,j=5+1,...,r=2,7—i<5—2,let
a(v(i)v(j)):(g—i-j—i—l)n—i-p—i-q;
fori=1,...,% j=C41,...rj—i>Z let
OA(UI(f)U(j)) (j—i—1)n+p+q

fori=2.. 14|22 j=5+1. . 5+ i—i=5-11let

N3

a (U(i)vc(lj)) (2i —3)n+p+g;

hﬁ:l%ﬂ+Z“w§j:§+1+F%L“Wr—Lj—i:g—th

fmi:g+L“wg+HJ—Lj:g+zuwr—1i+j§%r—th

o
—
=
Sl
(S
N
|

(i+j—r—=1)n+p+gq

fori:%—i_l"‘"r_l’j:g—i_[£J+1a---arai+jZ%Tglet
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OA(UI(f)U((Jj)) = (i—i—j—g—Z)n—i—p—i—q.

-----

First we show that for each ¢ € [1, (§r — 1)71—1— 1} there is ve € VE(K,, ) with

2 ; My,
a(ve) = c.
Consider the vertices vﬁ”, e ,vq(ll) and UY), e ,Uff). By the definition of o, for 1 < j < n,
we have

S[Uﬁ»l),&} :S(Uﬁ»l),&)U{&(Uﬁ»l))}:(U;:ll([j—i-lj—i-n & (—1)n))Uu{j}=
:[j+17(7'_1)n+j]u{j}:['7(7’—1)71—1-]']andS[U» } S((r) )U{ ((r))}_
— (U W+ a0 - ) u{(3r - 2)n+ 14} =

:[(%—1)714—1—1-]}@ _2)n+j]u{( r—Z)n—i—l—i—J}
= (5= n+1+j(3r—2)n+1+].

\_/

Let C = Uj—1 S [v(»l) a} and C = Ui_i S [vj(»r),a}. It is straightforward to check that

] )
cuC = [1, (%7’ — l)n—i— 1}, so for each ¢ € [1, (%k — l)n—i— 1}, there is ve € VE(K, )
with a(ve) = c.
Next we show that the edges incident to each vertex of K,
are colored by (r — 1)n + 1 consecutive colors.
Letv e V(K. n),where 1 <i<r 1<j<n.
Subcase 1.1. 1< <2, 1 <5< n.

By the definition of «, we have

S [U(»l) a} =9 (v(»l) 04) U{ (

-----

] )

S [U(»Q) a} =5 (v(?) a)U{a (v(?) }1

Wi )

N = (U G+ 15 +nle (- 1n)) U s} =
+J]U{J}_[a(7’—1)“+]] and

(U= ([ + Lj +n) @ (L= Dn))U{(r—Dn+ 145} =
4+ L(r—1)n+ 147

Subcase 1.2. 3<i< g, 1<j<mn.
By the definition of o, we have

S[j(), }fS(Uy),a)U{@( )} (U{f’ﬁz([ +1j—i-n]@(l—l)n))U{(i—Z)n—i—j}:
[(z—2)n—|—1—|—j,(7’—3—|—2)n+]]U{(Z—Q)n—l—j}:[(z—2)n+j,(r—3—|—i)n+j].

Subcase 1.3. { +1<i<r—-2,1<j<n.
By the definition of o, we have

(0] = 5 (')

s {o(v)} =
(Ul z——+1([.7+1]+n] @ ({—-1)n >U{( —i—Z—l)n—i—l—i—j}
=(i=5)n+1+4G+i-)n+j]u{(s+i-1)n+1+j}=

((i=3)n+1+5(5+i—1)n+1+5].

1+4

Subcase 1.4. r —1<:<r,1<j<n.
By the definition of o, we have
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Sl = Svrla) {a (/™)) =
(UE5" G+ L+l @ (= D) ) u{(5 - 1)n+ 5} =
(G- tea (a2 ] 0f(s e ) = (5 e b2 ] e

S[of,0] = 5 (o,0) U{a (o U}Qﬁf<u+Lj+M@u—1m0u
)n—l—j}U{(%r—Z)n—l—l—l—j}:

{( 7’—2)71—1—1—1—] :[(——1)n—|—1—|—j,
r_ —2)n+1+].

[(5=1)n+1+5,(3r

/N
wm/—\
l\JIOO

-----

W (Ky...n) > (%7’ — 1) n + 1 for even r > 2.

-----

Case 2: n is even. A
Let n = 2m, m € N. Let S; = {u(f),... ul® (TH),...,U;’;“)} (1 < i < r) be the

) m
r independent sets of vertices of K, ,. For ¢ = 1,...,2r, define the set U; as follows:

U = {ul”, ... u@}. Clearly, V(K,, ) = U¥, U For 1 <i < j < 2r, define (U;, U;) as the
set of all edges between U; and U;. It is easy to see that for 1 <i < j < 2r, |(U;,U;)| = m?
except for |(U;,U,.;)| = 0 whenever ¢ = 1,...,r. If we consider the sets U; as the vertices
and the sets (U;,U,) as the edges, then we obtain that K, _, is isomorphic to the graph
Ky, — F, where F' is a perfect matching of K,.. Now we define a total coloring 3 of the

graph K, . ,. First we color the vertices of the graph as follows:

-----

B(u(»l)):jforlgjgmandﬁ(uf)):(27’—2)m—|—1—|—jfor1§j§m,

j
ﬁ(uﬁwl)):(i—l)m—i—jfongigr—land1§j§m,

B(u§r+z‘—1)):(2r+i—3)m+1+jfor2§i§r—1and1§j§m,

B(ug%_l)):(r—l)m—i—jforlgjgmandﬂ(ugm):(37’—3)m+1—|—jf0r1§j§m.

Next we color the edges of the graph. For each edge u()ul) € E(K,

-----

1<i<j<2randp=1,...,m,q=1,...,m, deﬁneacolorﬁ(ul(f)ugj)) as follows:
fmi:L“WE}jzzuwni+j§r+th
B(ul(f)u(gj)) =@G+j-3)ym+p+gq

fmizzuwr—Lj:[ﬂ+2wwni+j2r+1bt

B (ufu) = (i+j+r—5)m+p+q
fori=3,....r,5=r+1,....2r—=2,j—i<r—2 let

B(ul(f)u(gj)):(7’+j—i—2)m—i—p+q;
fori=1,...;.r—1,j=r+2,....2r,j—1>r+1, let

B(ufu)) = (i —i—2)m+p+q
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fori=2,...,1+ [%J,j:rJrl,...,rJr [T;;J,j—z':r—L let
3 (ug‘)ugi)) = (2i—3)m+p+q

fori:[%J—|—2,...,7’,j:7’—|—1—|—[%J,...,Zr—l,j—i:r—l,let
fom‘:r+1,...,r+[gJ—1,j:r+2,...,2r—2,z‘+jg3r—1,let

fori=r+1,...,2r =1, j=r+[5[+1,....2r i+j>3r, let

B(uz(f)ugj)) =({+j—r—3)m+p+q.

-----

First we show that for each ¢ € [1, (§r — 1)n+ 1} there is ve € VE(K,, ) with

2 LR S Sl (2R
B(ve) = c.
Consider the vertices u(ll), o ulb)
m, we have

) and u(2r), ...,u{?") By the definition of 3, for 1 < j <

$[u, 8] = 8 (ul”, B) U {B (u)} = (U2 (1 + 1.5 +m] & (1= m)) U {j} =
j+1,2r—2)ym+ 5] U{j} =[4,(2r — 2)m + j] and
S a8 =8 (uf”, B)u{B (W)} = (U2 (G + Lj+ml @ (I — 1)m)) U{(3r — 3)m+
1+j} = [(r—l)m—i—l—i—j, (3r—=3)m+7]U{(3r—=3)m+1+j} = [(r—1)m-+1+j, (3r—3)m+1+j].

Let C = UL, S [ugl), B} and 5’ =UL, S [u?r),ﬁ}. It is straightforward to check that

CucC = [1, (%7’ — l)n—i— 1}, so for each ¢ € [1, (%7’ — l)n—i— 1}, there is ve € VE(K,  ,)
with B(ve) = c.

Next we show that the edges incident to each vertex of K,
are colored by (r — 1)n + 1 consecutive colors.

Letv € V(K,, ), where 1 <i<2r, 1 <j<m.

Subcase 21.1<:1<2,1 <5< m.

By the definition of 3, we have

S, 8 =5 (uf, B) u{p (u")} = (U2 ( g+1j+m]@(z—1)m))u{j}:
7+ 1, T—Zm—i-j]U{j}—[,(T—Z)m—l—j]and

S 6] = 5 (6 5) 0 {3 (20}
2m + ] U

l+5t=+12r—2)m+j

-----

= (U (U + Lj+mle (I — hm)) u{(2r — 2)m +
{(2 7’—2)m—|—1—|—j}—[j+1 (2r —2)m + 1+ j].

Subcase 2.2. 3<i<r, 1 <j5<m.
By the definition of 3, we have
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S 6] = (42,90 (1)) = (U 1] (- D (i=—2m) =
(1 —2)m+1+4742r —4+i)m+j| U (2—2)m+]}—[(z—2)m+j,(2r—4—|—i)m+j].

Subcase 2.3. r+1<i<2r—2,1<j5<m.
By the definition of 3, we have

§[u,8] = 5 (u”,8) u {8 (u)} = (Ui G+ Lj+ml @ (- Dm)) U{(r+i—
2)m+1+j} = [(z‘—[(mm;1+j,<r+(z'—z>m)+ﬂu{<r]+z'—z>m+1+j}—
t—r)m+1+7,(r+:—-2)m+1+ 7).

Subcase 2.4. 2r — 1 <i<2r, 1 <j<m.
By the definition of 3, we have

Suf0,8] =5 (uf 0, 8) u{B (uf ) = (U2 (G + 15 +m] @ (1= Dm)) U{(r—
m—+j} = [(7’—1)m+1—|—j,(37’—3)m—|—j]u{d(r—1)m+j} =[(r—1)ym-+j,(3r—3)m-+j|

S 8] =8 (u, ) u{B (uf)} = (U (U + 1.7 +ml & (1 — )m) ) U{(3r — 3) m+
1+5} = [(r=1)m+1+7, 3r—=3)m+j]U{(3r—3)m+1+5} = [(r—1)m+1+4j, (3r—3)m-+1+j].

-----

-----

3. Interval Total Colorings of Hypercubes

In [7], the first author investigated interval colorings of hypercubes @,. In particular, he
proved that @, € N and w(Q,) = n, W(Q,) > M for any n € N. In the same paper
he also conjectured that W(Q,) = ”(”+1 for any n G N. In [9], the authors confirmed this
conjecture. Here, we prove that WT(QR) = ”—HW for any n € N.

Theorem 12: [fn € N, then W, (Q,) = (n+1)2(n+2).

Proof:  First of all let us note that W,(Q,) > w for any n € N, by Theorem 7.

For the proof of the theorem, it suffices to show that WT(QR) < % for any n € N.
Let ¢ be an interval total W, (@Q,)-coloring of @Q,,.
Let ©+ = 0 or 1 and Qn+1 be a subgraph of the graph Qn+1, induced by the vertices

{(i,00,0a3, ..., 1) | (a2, a3,. .., ans1) € {0,1}"}. Clearly, Qn+1 is isomorphic to @, for
ie{0,1}.
Let us define an edge coloring v of the graph @,+1 in the following way:

(1) for i =0,1 and every edge (i, @) ( B) S (Qn+1) let

v ((,a) (i,5)) = ¢ (aB);

(2) for every a € {0,1}", let
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¢ ((0,) (1,a)) = ¢ (a).

It is not difficult to see that 1 is an interval W, (@, )-coloring of the graph @,,1. Thus,

Wi (Qn) < W(Qni1) = A2 for any n € N. W

By Theorems 7 and 12, we have that @),, has an interval total t-coloring if and only if

wr(@n) << W (Q).
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Lphy pwquuynniwGh gpudGliph L hhytpfunpubupnGtph
vhowlwjpwjhl thwjwwmwnp GoipynidbGbp

M. Mtwnpnujwl L L. bwywnpyub
Udthnthnid

G qqudh jhwiwwnmwp Ghpyndp wyn gpudph wyG GepynwdG b, nph nhypnid hwplwG
ququwplbpp L Yynntpp Gepygwo GG wmwpptpn gniyyGpny b gwGuguwo ququp L Gpwl
Uhg Ynntpp Lu Gepyywo GG wwpptp gnyGtpnd: G qpudh (hwuwwmwp Gpynudp
1,...,t gmyGbpny JuljwGtlp showlwjpwjhlG jhwjwwmwp —Gtpynd, Gpb pninp qniyGhpp
oquuwgnnoyty Gh, L jnipwpwlysnip v ququphl Yhg Ynntipp L wyn ququpnp Gipyyuo GG
dg(v) + 1 hwonpnuwG gniyGtpny, npuntin dg(v)-ny GubGuwlyywo k v ququph wumhdwln
G qpupnii: Uju wpfuwmnwlpnd wwyugnigynid £, np jnipupwlysnip Ynnuind dhulng G
pwlwyh ququpltipn wwpniGwynn ;phy pwuquuwynniwbih qpudpltint nGkG showlwjpwjhb
thwywwumwnp Gapynd: UygthG, wpfuwmwlpnmd mpynd G6 npn) qGwhwnmwyuGitn wju
gnwdltiph showwjpwjhl jhwjwwmuwp GipymuiGipnd dwulGwygnn gnyyGtph GJuquagnyG
L wnwybjugny)G hGwpwynp pyh hwdwnp: UWhwunwlipmd numdbGwuhpymd GG Gwl
@, hhytpfunpuwGwpnlGtph dhowluwypwjhG jhwjwwmwp Ghpynudtbp:  UwuGwynpuwbu,
wywgnigynud £, np @, (n > 3) hhybpfunpwlwpnl niGh Showwjpwyhl thwwwmwp t—
Gtpynd wyG b dhwyl w6 nhwypnud, tipp n+1 <t < (”—HW
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M HTEepBaAbHEIE TOTAABHEIE PACKPaCKH IIOAHBIX
MHOT'OAOABHEIX I'pa(poB U runepKyOOB

I'1. Iletpocsan u H. XauaTpan

AnHoTanuys

ToTanbHOM packpackol rpada (G Ha30BeM TaKyl0 pacKpacKy BepIINH U pebep
rpapa G, TOpU KOTOPOM CMe’KHble BEepIIMHBI, CMe)KHble pebpa U BepIINHHI,
WHIIUACHTHBIe peOpaM, OKpallleHbl B pa3AWYHBIe IBeTa. VIHTepBaABHOM TOTAaABHOU
t— packpackol rpada (G Ha3zoBeM TOTAaABHYIO pacKpacKy rpacga G B nBeta 1,...,t¢
IIpU KOTOPOM BCe IIBETa MCIOAB30BaHBI, U pedpa, UHIIUAEHTHBIE KAa>KAOU BepIINHE
v BMecTe C v, OKpalleHbl B dg(v) + 1 TOCAepOBaTEABHBIX IBETOB, rae dg(v) -
9TO CTeleHb BepHIUHBI v B rpade (. B HacToglleit paboTe AOKa3zaHO, UYTO BCe
IIOAHBIE MHOTOAOABHBIE I'Paddbl C OAMHAKOBBIM KOAWMYECTBOM BEPIIVH B Ka>KAOU AOAE
MMEIOT WHTEPBAABHYIO TOTAABHYIO PACKpacKy. Kpome TOro, moaydeHnl HEKOTODBIE
OLleHKV HaWMEHBIIIero 1 HauOOABIIErO0 BO3MOKHOIO YHUCAA IIBETOB B MHTEPBAABHBIX
TOTAABHBIX PAaCcKpacKax 3TUX rpadoB. B paboTe Takke MCCAEAOBAHBI MHTEPBAABHBIE
TOTAAbHBIE PACKpPACKM THMIIEpKyOOB (),. B uyacTHocTH, AOKa3aHoO, 4yTO runepkyo (),
(n > 3 ) UMeeT MHTEPBAABHYIO TOTAABHYIO PACKPACKY TOTA@ W TOABKO TOIAQ, KOTAQ
n41<t < otlind



