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Abstract
hypotheses testing for arbitrarily varying

is paper blem of multiple
e VIiS) known to the statistician is solved from

(AVMS) with state ¥
fm-:fn:;ltt E;:ﬁl.hmiully m@b optimal (LAQ) m:im-:. The matrix
of asymptotic interdependencies of all possible pairs of the error probability oxponvlnu
(reliabilities) in optimal testing for this model is studied, The LAQ test, assuming
that exponents of some number of the error probabilities are given, ensure the best
asymptotic exponents for the rest of them. We find LAO test and the Wlnw:dl“S
matrix of all error probability exponents. As an application to information theory,
the E-optimal rate R{E) (the minimum rate R of the source sequences rom;arr&s:‘uh
when the decoding error probability is less than exp{~NE), E > 0) and the relinbility
function E(R) of AVMS coding are determined.

1 Introduction

In statistics the problem of hypothesis testing is broadly known with its classical model
of two hypotheses. Suppose that a (N + 1)-vector X = (fg,T1;. ¥N); Tn € X, ns
0. N, is emitted from an information source (discrete memoryless source (DMS), arbitrarily
varying source (AVS), arbitrarily varying Markov source (AVMS), ete.), which is assumned
to have a probability distribution (PD) either Gy (hypothesis H,) or Gy (hypothesis Hy).
Observing the data x the statistician must make a decision which of hypotheses is correct.
The functional relation of the first and the second kind error probability exponents is in
focus of research. There is a rich list of relevant references on this problem. The initigl
results for DMS were revealed by Hoeffding [1], then by Csiszdr and Longo [2], Birgé [3] and
others. Multiple hypothesis LAO tesing for DMS was studied by Haroutunian in [4]. There
were found LAO tost and the corresponding matrix of interdependencies of error probability
exponents of all possible pairs of hypotheses. The LAO test, assuming that exponents of
some number of the error probabilities are given, ensures the best asymptotic exponents for
the rest of them.

Natarajan's [5] result concerns the Markov sources. Hypothesis testing for the model of
AVS was investigated by Fu and Shen [6] for the case when side information is absent, The
problem of multiple hypotheses LAQO testing for discrete stationary Markovian source was

solved by Haroutunian ([7]-19]).
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The hypothesis testing problem for AVS with side information wes solved by Ahlswede.
Aloyan and Haroutunian in [10]. Multiple hypotheses testing for AVS was exemined by
Haroutunian and Hakobyan in [11]. The latter generalizes the hypothesis testing model of
Fu and Shen [6] to the case of more than two hypothesis, when side information is available
fur nistisiicia.

We solve the problem of multiple hypotheses LAO testing for AVMS, with three hypothe-
ses G = {G;{ziu s8), z,u€ X, s €8}, 1=T173. The case of three hypotheses is considered
_ solely with & view of brevity of exposition.

A formal representation of AVMS is as follows. Let X be the source elphebet, § be the
finite set of source states.

Time-homogeneous Markov chain X, X;. X3, ... is a stochastic process with transition
probabilities

Gi(Xn = z|Xa1 = 4,5, = 8) = Gi(zlu,8), =13, n=12..
The source studied in this paper is defined by homogeneous Markov chain with not necessarily
unique stationary distributions Q; corresponding to transition probabilities distribution G;

Q= {Qiuls) = Q(Xo=ulSs =35), ueX, seS}

such that
Y Qu(uls)Gi(zlu,s) = Qi(z|s), s€S, zeX. (1)
ueX
The conditional probability of the vector x = (zp, 21, ..., zx) € ¥+ of the Markov
chain with transition probabilities G; and stationary distribution @, | = T,3, with respect
to known state vector s = (sg, 51, ..., S5) € S¥*! is defined as follows

N
Qi o G{'(x]s) = Q(zo|s0) II1 Gi(ZnlZn-1,84), 1=T3. (2)

The conditional probability of a subset A ¢ A¥* is the sum
QioGY(Als) = Y. QoG (xs), ses¥, 1=T3.
xEA

As we mentioned above the paper it is dedicated to the problem of multiple hypotheses
LAO testing for AVMS with states sequence known to the statistician. We find LAO test
and the corresponding matrix of error probability exponents (reliabilities) for this model.
As an application to information theory, the E-optimal rate R(E) (the minimum rate
R of the source sequences compression when the decoding error probability is less than
exp{—NE}, E > 0) and the reliability function E(R) of AVMS coding are determined. The
resl of the paper is organized as follows. In Section 2 we describe the problem in detail
and provide some definitions. In Section 3 the main theorem is formulated and the proof
is exposed in Section 4. The application of this theorem to solution of the AVMS coding
problem is presented in Section 5.

2 Basic Concepts and Definitions

Suppose that there are three alternative hypotheses about the tramsition PD of AVMS:
Hy : Gy = Gylz|u,s), zueX, s€8, 1'=T3. A vector x = (zp, %y, ..., Zy) is emitted
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mmmumdmgnstm'mmhﬁﬁq'mm which we call
reliabilities (in Uhe paper we use ouly log-s and exp-s o the base 23

1 e .
Eqpl) 2 limsup = 5= logafi(@#®) Lk=T3. )
Using (3) and (4) we see that
Eule) = l}’-,'fsnﬂv}- (5)

We name the matrix E2{Ey(¢)} the reliability matrix for the sequence of tests .

Following Birgé [3] we call the sequence of tests logarithmically asymptotically optimal
(LAO) if for given positive values of L —1 diagonal elements of the matrix E the procedure
provides maximal values to other elements of it.

The goal of this wark is to find out reliability matrix of LAO test for AVMS and reveal
conditions of making positive of all its elements.

We use the method of types in the next scctions. Therefore we remind following defini-
tions and fundamental properties of types [14]. For defining types we don't take in consid-
eration first element of the vector s, so as a vector 8 we can consider § = (81500 88). Let
N(sls) be the number of occurrences of a state s € & in the N— vector s. The type of vector
s is the PD i
Po={Fls) = -A;N(ala}. s€ S}

The second order type of a Markov chain’s vector x € X¥*! (see [7], [12], cf. [15], [16])
is the PD Q(u, x) defined by the square matrix of |X'[* relative frequencies N-UN{u, zjx)
of simultaneous appearance of pair (1. z) in neighbor positions in x.

The second order joint type of the pair of the vectors x and s is the ’D

Gralty 2,8) = {Fu(8)Qun(ul$)Gxalc]uy 8) = %N(u.z.alx.sj. ru€ X, s€S),
where N(u, z. s|x,8) is the number of n such that (243, 7s) = (©,7) and s, = 5. n =

1, N, that is letters u and x appear in the vector X = (rg, 23, ..£x) being neighbors with u
preceding x and the states 5 € § in vector s correspond Lo z.
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- We use as conditional second order type of vector x with respect to vector s the condi-
tional PD Qys(u|s) defined by relation
Uua(uls)EN(u,sx,8)/N(sls), ueX, ses,

where N(u, s|x, s) is the number of repetitions of u in x and s in s, such that positions of u
precede positions of s.
There is also the conditional type of the vector x with respect to vector s as conditional

" PD Gyalzlu, s} defined Ly
Ges(zlw, 8) = N(u,z,8/x,8)/N(u,s|x,8), z€X, s€S.
We apply notation @ o G for the following PD
QoG = {Q(uls)G(zlu,s), z,ueX, 58}

similarly we will use PDs Q;0 Gy, | =T,3 and
e © s = { Q)G g) = T8, zue, ses),

for the conditional type of x given s.
We denote by TAh,5(X|s) the set of vectors x from X¥+! which have the conditional

type given 8 such, that Qxs0Gyxs = QoG and P, = P.
Define the conditional entropy of X with respect to S:

Hgecip(X|8) = - S‘Z':. P(5)Q(u|s)G(z|u, s) log Q(u|s)G(z]u, s).

We define the Kullback-Leibler conditional divergence D(Q o G||@; o Gi|P) of the distri-
bution P o @ o G from the distribution P o Q2 G,
as follows

o GllQuo Gi|P) = QMuiz)Glate)
D(Q G”Ql G‘lp} g E'.P(J)Q(uls)c(zlu, "J 103 QI(EIJ)G;(II'E. 3) v, b= m‘
Similarly D(Qk 0 Gxl|Qio Gi|P), Lk =T.3 are defined.

3 Formulation of Result

We denote by PN(S) the space of all types on S for given N, and by Qo G¥(X,s) the set
of all possible conditional types on A for given s.
Suppose that positive numbers By, By are given. We shall define LAO test with the

following sets of types:
Ri={QoGe QoG"(X,s),P e PN(S):
D(QoGlIQoGi|P) < Ey, 3Qi: D(Q||QIP) < oo}, 1=1,2,
Rs={QoG e QoG"(X,8),P e PY(S5):
D(QoGl|QoGi|P) > By, D(QeG||QoGa|P) > Eyp}.
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B (B2, EaalEn)=Fa (6.0)
Bl g, DIQuGIGeGHES &= TS =l ki 84
f.;.é-a;r &D(QOGHQOG.!PL k=12 (8.0)
F35= pig Exa. (6.d)

Theorem 1. If different conditional distributions Gi, [ = T3, and positive numbers

Esy, Eag are given and the following inequalities hold

Eyy <min mlnu&f D(Q22Ga||Q: 2 G1IP), ig,fD(Q; 2 GsllQy 2 Gi 1P T.a)
Ep< x:;nminiﬁ?mig[D(QachiiQsoG:?P)!. (7.8)

then for AVMS " ‘
+ such that elements of the reliability matrix

a) there exists & LAO sequence of tests ¢

E(") are defined in (6), ‘ 3
b) if one of the inequalities (7) is violated, then at least one element of the matrix E(p*)

of any test is equal to (.
This theorem is an generalization of the results of [6] and [11] to the case of AVMS.

4 Proof of Theorem 1

Qur proof of Theorem 1 exploits the method of types. We are interested in the following

properties of types.
For every couditional type of vector x given states vector s {Qxa(uls)Cxalrlu, 8), T.uE

X, s € S} the upper estimate holds

Taouc(X18)] < exp{NHpgea(X|S) +o(1)}- (8)

For & distribution G; on X', the vector X € Ti.c(X|s) has the conditional probability with
respect to s of the type F, = P

Qi G¥(xls) = exp{—N(Hggp(X|8) + D(Q o G||Qi o Gi|P)) + o(1)}. (9

Note also that (8) and (9) give the upper estimate for type class probability .

Qo G (Tigua(XIs)ls) < exp{-ND(Q e Gl|Qi o Gi|P) + o(1)}. (10)

The lower bound of the probability of type class is the following:
F 1
Qi 0 G (Tigec(X|8)ls) > ES L] exp{=ND(Q o G|Q: e Gi| M) }.
The proof of the Theorem 1 consists of two parts. In the first part we prove the existence of

sequence of tests. In the second part we prove that if one of the inequalitics (7) is violated
T ek b s | o
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The test & for every states vector s € S¥ can be given by the set Bj¥. the parts of the
. space X¥*, in which the hypothesis H; is adopted. We shall verify that the test for which
Bi= U TioulXls), (=T3 (11)
O=Cery

will be ssymptotically optimal for given Eyj;, Ez;. We can show that
3
BLN\Bi,=8 i#k ad [JBY=2a"
=1
In its order the first part consist of the following steps.

First we show that following inequality holds
o Sigfa inf . D(QoG|lQoGiP), k=T3, 1=13 k#L

Then we will show Lhal Lthe converse inequality holds
Ejy 2 inf ipf D(QoGlQoGilP), k=T3, 1=13k#L

Finally we will conclude that the determined sequence of the test is LAO.
For x € TPh.o(Xls), s € TP(S), I = T3 we show that the probability

Qi o GJ¥(x|s) satisfies equality (9): _
Q1o G (x|s) = Qi(zo}so) [] Gi(zlu, s)NPRMiaG s —
us

= Qi(zals0) [] exp{NP(s)Q(uls)G(zu, 5)[log Gi(zfu;, s)—— log G(zlu, 8) + log G(zu, s)}} =

Tus y Q(ula)G(zlth 3)
= S ORICRG S aaieiteh

+log G(z|u, 5) + log Q(uls) — log Q(uls) + on(1))} =
= exp{—N[D(Q ¢ G||Q 0 G1|P) + D(Q|Qi) + Hpgoc(X|S)] + on(1)} =
= exp{—N[D(Q o G||Qi o Gi|P) + Hpgoa(X|S)] + on(1)}. {12)
Where
on(1) = max{max max [N~ log Qi(uls)| : Qi(uls) >0} =0, as N — cc.

The error probability o, (®) for k = 1,2 is the following

(") = max Qo Gi(B |s) = max Qi 0 G,,(M;D(MHOG SN Tpgec(X8)[s).

Now we have to show thal af,(p") for k = 1,2 can be upper bounded. Using
polynomial number of different types and (10) for probability @ o Gi(:|s) of the set

Uqoc:n(qecliqeay P> Euy Thigoc (X [8) we get

ol (¢°) < max(N + 1)*1Sl su 0 Gi(T2% (X 8)s
(") < max( ) e s Qk © Gx(Tpgoc (X )| ].
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<N+ m:pw e
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CIP{—;\ ED(QQ‘-‘WIQ@GMP) oxil})
% ﬂ;PM ﬂ@f:g?.'lnx,_._. :
< exp{—NEea —ox{D]}
log(N +1) — 0, when N — .

(1) = (N -+ 1) NAPIS| it X
wh'l'{:t?ini.it‘ 1+=')i._31. 1 # A, we can obtain similas ineyualities.

: = ; ¥ c(Xis)s) <
ai(¢") = mayQuc Cal(BLLle) = 4'350"0"@%!:, Trgw(Xis)is

< %U\r + l)p\'!";. sup Q‘, OG.{TEQ.G(-\'L’".} <

o o YA —ND(Q=GlIQ=G:P)} =
< (N+1)"Tep sp exp{

=sup sup uP{—.-\'ID(QoGEIOOGuiI‘}-Ox{lli}Swﬂ{-e"lfm"’&'“}”- (3)
P QGER; i

Now let us prove the inverse inequality
afi(+") = may Qi e Cu(BLLl8) = may Qn e Gt(@y‘m Trgc(Xis)is) 2

> may sup Qs © Gi(Tiguc(X18)ls).
Using the bounds on @i © Gi(Tf.c(X(s) derived in Theorem 1, we have

may SuP. Qu ° Ci(TRgc(XTs) 2

Z(Nd-l}""""-n'l’p sup exp{~ND(QoGlIQeGilP)} =
QeGER;
=sup sup exp{~N[D(Q°GliQGilP) — on(1)]}- (11)
P Q:GeR

Taking into account (13) and (14) and the continuity of the functional D(Q o G||Q o Gi|FP)
we obtain that limy .. {sup —N~" logafl,(¢")} exists and in correspondence with 6.4 equals
to Ej,. Similarly we can obtain upper and lower bounds for af,(¢"), k = 3. Applying

the same reasons we get the reliability Eyx(¢®) = E5;.
The proof of the first part of the theorem will be accomplished if we demoustrate that

the sequence of tests " is LAO, that is for given Eyy, Eya doesn’t exist such tests ¢** that
for all L,k = 1,3 Efi < Ej,. Let us consider any other sequence of tests @** wiich are

defined for every s € S by the sets D{, DIY, DY such that
En2Ey Lk=T3 (15.0)
This condition for large enough N is equivalent to the [ollowing inequality:
afi(¢™) < afli(@"). (15.6)
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- Below we examine relation between Df} and Afj, | = T3. There are the foliowing
. possible cases:
DinBl=0, DYcBL

If we show that there exist some Iy, k;, for which (15) doesn't held, we can say that the test
" is LAO and proof of the first part will be accomplished.
For the first case we have

aif!l] (‘P“} = %Q‘: UG;I(E:‘IS) = %Qﬁ OGﬁ (B!?‘ls) = exp{_NiEhlh = 0.'\!(1)]},

Note that in this case the inequality (15) isn’t satisfied.
The second case will be proved by the following way:

o), (™) = max Qi o Gy, (D s) 2 max @y, o Gi, (B8] 2

> Q, oGy, ( Tk >
maxQ, o Gy w;mm'gmlm}&m Pac(Xls)ls)
> max sup Qi © Gy, (T5uc(Xs)[s) 2

*<5" QuG.DI(QeGIIQ=Gr, |P)>Eiy,

> (N + 1)1l ~ND(Qo G||QoG,|P)} =
2( ) sgpaﬂw(mlzl:g.,m»&,n, = A

= sup sup exp{-N[D(Q5 G[Q= Gy |P) — on(1)]} 2
P QoG:D(QsG|QeGy, |P)>Eyy,
2 exp{—N[Eyy, - on(1)]},

The statement of part b) of the theorem is evident, since in case of violation of one of
the conditions (7) (for example (7.a)) at least one of the elements of reliability matrix Ej,
defined in (6) reduces to the equality to 0. Suppose that (7.a) is violated and

min min[i&l' D(Qq0Gy)|Qy 0 Gl|P)ni8_fD[Qa 0 G3||Q 0 Gy|P)] = i&IDfQS 0 G4||Q) 0 G, |P),

that is
By 2 ig’fD(Qz ° G3||@; 0 G1|P).
According (6.5)
EjpSipf inf, D(QCQoGylP).
&) El‘l’ = 0.

5 Application to Source Coding

The tight connection of the hypothesis testing problem and the problem of estimating the
optimum probability of incorrect decoding, when vectors of messages of length N from a
discrete memoryless source are block coded, was emphasized by many authors. In source
coding problem the reliability function E(R) expresses the dependence of the reliability
(exponent of the optimal error probability) on the code rate R ([14]). This function can
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Fig. 1. Communication model in source coding with side information.

i . A block code
Mathematically the problem of source coding can be formulated as follows
(fxs1, Fu+1) in Fig. 118 composed by a couple of mappings. The encoder [y maps the

space X+ into a finite set of labels
!N*! . x““’ =2 {0' ln 2-3' ween “’N‘hl}

and the decoder knowing states vector s
Fxa1:{0,1,2,3,. Myn} xS¥ = o

chooses a vector & from AN*1,
Given an AVMS defined by G, in Section 2, let

A= {x: Fyu(fys(x).8) = x}

be the set of those messages which are decoded correctly. Then the ervor probability in
AVMS coding for the code (fx+1, Fvs1) is determined by the following way

elfer, Fyna) = 1= _mip, Q1o Gl(Als) = max, QuoGY(Als) (16)

The cardinality of the finite subset 4 C XV*! is called the volume of the code and is
denoted by My.y. The code rate is x5 log Al. .

Definition 1. R > 0 is called an E-achievable code rate for reliability £ > 0 and
sufficiently large N if for any £ > 0 there exist a sequence of codes (fy1, Fvsi) such that
eUvorc Fra) Sexp(-(N+DE)  and  clogMya <Rbe. (1D

"The infimum of all E-achievable code rates is called optimal and denoted by R(E) (rate-
reliability function). It can be defined as follows:

1
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The minimal error probability among the codes with 20V codewords with side information

is defined us
: N
acn s gty o255, @1 © G (Al0)
Definition 2 The relishility funetinn F(R) of the AVMS for rate R is defined as follows:

E(R) = ;l_— N 1oge(c:” R)=

e(GY, R)2

1 . &
;11_:50 “N+1% ACHH T A Carp{ N} s SR @1 0 Gy (Als).

Now for estimation of R(E) and E(R) we apply the result of hypothesis testing from
Theorem 1 for L = 2.

The problem of source coding, subject to exact reconstruction of the source messages,
can be parallelized with a hypothesis testing. Let the equiprobable distribution Gy € P(X)
be given by Go(z) = i, 7 € X and let Ga(.|s) = Go for every s € S¥*'. So we have
following hypotheses: H; : G, and Hy: G; with corresponding error probabilities. The
first kind error probability is

ofly(¢")2 max @ cGi(Als),

BESN+1
and the second order error probability is

offi(¢")2 max, Qoo Go(4) = max Qa0 Gy(Als).

The optimal (minimum) coding rate subject to error exponent E > 0 is given by (17).
Coming from this parallel we are able to derive the functions R(E) and E(R) by specializing
Theorem 1. The analytics for those functions are given by the following theorems.

Theorem 2. In the presence of side information the rate-reliability function of AVMS
with conditional PD G;, for any E > 0 has the following presentation:

R(E) = g% - osiomctiascil A2 o Diaustpyeos SPA-IX1S):

Theorem 3. If
mex Hp,g,00,(X|S) < R < log ||
and the conditional probability distribution G} is given then the reliability function of AVMS
can be presented in the following form:

B(R)=mjn, _ min  D@QoG|QoGP).

Proof of Theorem 2. Applying Theorem 1, with G, and G, and taking L = 2 we get
the following representation for (6) (which implies By = Eyjg = E and Eqp = f)1)

Ban = 9 o miawctiaeaitrih. 2 v piataripcasl (@ ° €11 © GalP) kL8

According to the definition of Ej); we have

1
- ax T -~ logaf () =
= w“ﬂ:(v]lnm{-ﬂfﬂ ST (%)
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_ b e max QaoGE (As) =
- sup Jim, ,\'+1‘°5-ss~-\o' J
AT m,_,q.-c?ﬂ-ssmt—ﬂﬂ

max Q:° G (Als). (19)

i -
= E o N+ 1 “A;_.rq.u_ o ..%f&"f_{:!;}ﬁ; NE s SN
N o
: QoG (Als) =
ATX¥S wx-s%:!lﬁfilhﬁﬂ{—ﬂnlgﬁ’ o
1 nf "‘{&:‘: " {20} -
ACHS T max gy vas QoG (An)se (=N E) JXF
Because =
D(Q = GliQqo GolP) = log |X| - Hpgea(X1S),

e D(QGlIQ=GalP) =

wwmmumhg. 30 DQIQIPI<=
Nlog |X] = Hrosa(X19)] =

k3 igfmmww-a.msl’é. 3Qy: DQIQ: P}
Heawa(X19): @1)

= 10§ | = X . QeGIQsGuIFISE, 3 Qu: DIQIQuIPI<s
By definition of R(E), according to Theorem 1 and {18), (20), (21) we obtain

Mys =

1
=Tm — mi -
R‘E} NN +1 losm”*‘. mAX NS Qnrﬁftzh)iup{-h'm

1 1 H N -
= log|¥| = T ~ T8 jymen. man ac} Gleysenp (-NE ST Qa2 Gy (Als)

= IR G DIQIQSGIPIE. 3 oD@ @e(X1S).

Theorem is proved.
Proof of Theorem 3. Ey;(Ey;) is defined in (17), it can also be written as follows:

Sy il ; N
Exi(Ey) = E Nl losal:xﬁ“;nn,.,m.gjnﬁfah}s-p(-ﬁs.u)mlgﬁ‘ Q.0 Gy (Als).
(22)

Lot Gy = Go and Eyp = log|X] — R. From this notations and (22) we have
Ez(log|X| ~ R) = :
=Tm - <=} inf W(Als) =
N=xx N+1 m“g“mﬂ‘ e, g +1 QoG (ls)Senp (= V{11~ -Eléﬁi Qa0 Gy (Als)
1

o -_—Iq M GN.A ) =
—x N +1 m’"’ﬁg""w"‘mlxl—ﬂ)}%’qzu 2 (Als)

Q20 GY (Als) = E(R). (23)

T
- N+1 "acavs, &S "'P{"u]"%'

As Gy =Gy
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(uis]G(zlu 5

(uls)Golzlu, s) og | X|—Heg-c(X|S5).

(24)

D(QeGl|QeGol|P) = Z P(5)Q(uls)G(zlu, s) log =~ 2

and m,in DIQ o GlQ o ColP) = m!n Z P(8)Q(uls)G(zlu, 5) log = Q{ulaJG[zlu )2

Quis)Go(zju,5)
= log|X| — max Hpg.c(X|S). (25).

From (24) engipur notations we obtain that =
P ol Qe et H)E iy 3G DIQIIGH P <oo D(Q-GiiQ »GilP)

= T o0 0u0IGnel Pt 301 DG Pr<ee D@ © ClIQ 2 GalP) =

= T oGt g XD ax: DGR (3 ° 1@ 0 Cal P). (26)

By the first part of Theorem 1, when Ejj; < minp D(G5||G|P) then

Ean(Bn) = Wn(mmoams%{u 3G: D(GiI@s|Pi<oo 2 o Cligecslt)

According this fact, or notations,(23),(25) and (26) we have that when maxpep(s) Hp,goc(X|S) <
R < log |X|, then

E(R) = o0 b matXiss s aon D@FIe 2 3.2 ClIQ 2 CalP).
By the second part of Theorem 1, if Eyp > minpeps) D(G3||G;|P), then Eg;(Ey;) = 0.
From here, (23), (25) and (26) it follows that when R < maxpep(s) Hpgoc(X|S) then
E(R) = 0. Theorem is proved.

References

[1] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions,” Ann.
Math. Statist., vol. 36, pp. 369—401, 1965.

[2] I. Csiszér and G. Longo, “On the error exponent for source coding and for testing simple
statistical hypotheses,” Studia Scientiarum Mathem, Hung., vol. 6, pp. 181-191, 1971.

[3] L. Birgé, “Vitess maximals de déroismence des erreurs et tests optimaux associes”. Z.
Wahrsch. verw. Gebiete, vol. 55, pp. 261—173, 1981.

[4] E. A. Haroutunian, “Logarithmically asymptotically optimal testing of multiple sta-
tistical hypotheses”, Problems of Control and Information Theory, vol. 19, no. 5-6, pp.
413-421, 1990.

[5] S. Natarajan, “Large deviations, hypotheses testing, and source coding for finite
Markov chains”, IEEE Trans. Inform. Theory, vol 31, no, 3, pp. 360—365, 1985.

[6] F.-W. Fu and S.-Y. Shen, “Hypothesis testing for arbitrarily varying source with
exponential-type constraint”, JEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 892—895,
1998.

[7] E. A. Haroutunian, “On asymptotically optimal testing of hypotheses concerning
Markov chain”, (in Russian), Izvestiya Akademii Nauk Armenii, Mathematika, vol.
23, no. 1, pp. 76—80, 1988.



(8] E. A. Hasoutunian. “On asymptotically optimal criteria for Markov chains”, (in Rus-
* sian). The first World Congress of Bernoulls Society, section 2 wvol. 2 mo. 3, pp
e ﬁ‘ . . e
4 Ewa.luuiﬁmmn. ~Asymptotically optimal testing of many statistical hvpotheses
i : S psi?. (i Ruson), § th fnters. Vilsiss Conferunze oo Probabilies
athem. Statistics, vob. 1 A-L), pp. 202-203, 1988

1o} R.F. e , E. \'.:?Wmmug Ex .’E Hu’mﬁ?uu‘.un. “On luguithmu‘ail_\- asymptot-

ce with side information”, '

1 ally optimal hypothesis testing for arbitrary varving sour
! : v Sciemce, Volume 4123, "General Theory of Information
Transfi inatorics . i s 457461, 2004
] E A. e amd O P AL Springet, PRy A Muliple hypothesis testing Ly informed
statistician for arbizrarily varying object and application to source coding”, Mathe.
matical lems of CmEnyr Science, vol. 23, Kp 36—46. 2004 >
12! E A. Haroutunian. M. E. Harcutunian and A. N. Harutyunyan, “Realability criteria
in information theory and in statistical hypotheses testing”, Foundation and Trends
~_ in Comuntoations and !gormahm Theory. vol. 4, no. 2—3, 2008. . '
[13] E. A. Haroutunian and N. M. Grigoryad, “On reliabilty approach for testing of many
distributions for pair of Markov chains”, Mathematical Problems of Computer Science,
vol. 29, pp. 89—96, 2007 :
[14] L Csiszdr and J. Koruer, “Information theory. coding theorems for discrete memoryless
emns”, Academic Press, New Y::.l 1981. |
[15] N bs:::nn ".-\s,\mptoticd;_;'uopti classification for multiple test with empiricaily ‘
 observed statistics,” IEEE Trans. Inform. Theory, vol. 35, no. 2, pp. 4U1- i
[16] P. Jacket and W. Szpankovksi, “M?&ov types ﬁa niinimn;? rgdt':’xl;d:r?cl\' ﬂﬁilm
. 13931402, 2004

__ sources,” IEEE Trans. Inform. Theory, vol. 50, no. 7. pp
[17] K. Marton, “Entor exponent for source coding with a ﬁpcdclil)' criterion,” [EEE Trans.

Inform. Theory, vol. 20, no. 2, pp. 197199, 1974.

Stnbiwgywd Yhewlwgph Ynnihg Qudwjwiminptl hothnfuon §
wnpymph Jhpwptpyw) puqiwyh upiudGtnh uumnqnuli‘r!!llhr:uul:;l:mlumﬁ
Ynnuynpiwb hnuwhmpjul mayghwjp glwhwwmnip

L. Qphgopjul
Udithmpoud

Loduwd b YuwiwywlwtnpbG hohotugon Yondbwbh hipa
puiw W
mﬁﬂ llémhih hwéwp puqiwgh Jwphudbbph  wanigiw ﬁ'ﬁ";f.:.l‘: L;}'[l':mﬁl;
mmﬂsm“:‘ ufjmzmmm hupnGh 56, b opun fuduuiputiapbd pugning &
bt oo G Bl
bpaym JuplwdGph nhupp pighwn ‘wnw( 'l‘ll'l.; ""F.l“tu ph) tholutwhnjwonmpsy
yhawybph hugnprwlwnp)nln wlhujn b ngnmnmn;[m”w fungeusm g Mg
Chih Ynndhg: buly GnyG dnnbih hwdwp, tpp hdwlil i A
rmon e Doty i s pssnuifsiohuifu TS
. pinilijwih b Upnpwud i
e s oy L St s
$onGlighubbpg: n wpwgnipymG-hmuwhnpynG L hnwwghngpymG-wpugnipymi




