Зфаффш-бітрыбит, афтирупіййн XVIII, № 1, 1965 Физико-математические науки

МАТЕМАТИКА

А. Г. ГІОЛЬМИСАРЯН

ОБЩИЕ КРАЕВЫЕ ЗАДАЧИ ДЛЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ С РАЗРЫВНЫМИ КОЭФФИЦИЕНТАМИ

§ 1. Через $x = (x_1, \dots, x_n)$ будем обозначать точку *п*-мерного эвклидова пространства R^n , $x'=(x_1,\cdots,x_{n-1}),$ 2—ограниченную область в R^a с границей Γ , Ω_1 -подобласть Ω с границей Γ_1 , не имеющей с Г общих точек, $\Omega_* = \Omega/\overline{\Omega}_*$ (случай двух областей рассматривается для простоты изложения, все результаты верны и в случае разбиения 2 на конечное число областей. Случай неограниченной области, когда \mathfrak{Q}_2 совпадает с $R^n/\overline{\mathfrak{Q}}_1$ будет рассмотрен в n° 4). На границы ГиГ, накладывается следующее условие: ГиГ, можно покрыть конечной системой областей U_{ℓ} (соответственно V_{ℓ}) в R''таких, что в каждой из $U_{i}(V_{i})$ определено невырожденное бесконечно гладкое преобразование координат $x \rightarrow y$ такое, что после применения этого преобразования Г (соответственно Г1) становится гиперилоскостью у, = 0. При таком отображении прилегающая к Г часть области 🗜 оказывается лежащей в полупространстве у >0, а при отображении границы Г, прилегающая к ней часть области 2, лежит в полупространстве у <0, а прилегающая к границе Г, часть области Ω_2 лежит в полупространстве $y_n > 0$. При этом требуется выполнение следующего условия: если начало координат исходной системы перенести в любую точку P границы Γ , либо Γ , и если у-локальная координата в области покрытия, то требуется, чтобы в точке Р имело бы место

$$\frac{\partial y_1}{\partial x_n} = \dots = \frac{\partial y_{n-1}}{\partial x_n} = 0; \quad \frac{\partial y_n}{\partial x_n} = 1, \quad \frac{\partial y_n}{\partial x_1} = \dots = \frac{\partial y_n}{\partial x_{n-1}} = 0.$$

Пусть $0 < t < T < + \infty$. Через Ω^T , Ω_t^T , Ω_2^T будем обозначать цилиндры $\Omega^T = \Omega \times (0 < t < T)$, $\Omega_1^T = \Omega_1 \times (0 < t < T)$, $\Omega_2^T = \Omega_2 \times (0 < t < T)$, а через S_Γ и S_{Γ_t} — боковые поверхности Ω^T и Ω_1^T : $S_\Gamma = \Gamma \times (0 < t < T)$, $S_{\Gamma_t} = \Gamma_1 \times (0 < t < T)$.

Приведем несколько известных фактов относительно пространств W_2^l и $W_{x,l,2}^{l,n}$ (см. [1], [2]), которые понадобятся нам в дальнейшем. Пространство $W_2^l(R^n)$ определяется как пополнение пространства $C_0^\infty(R^n)$ по норме

$$||u||_{l_{\epsilon}|R^{n}} = \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2l}) |Fu|^{2} d\xi\right)^{l_{\epsilon}},$$
 (1.1)

где Fu—вреобразование Фурье функции u(x). Если l—целое, то норма (1.1) эквивалентна норме

$$\left(\sum_{|a| < l \, R^{n}} \int |D^{n}u(x)|^{2} \, dx\right)^{3}, \tag{1.2}$$

а при / дробном - норме

$$\left(\sum_{|a|<|l|} \int_{\mathbb{R}^{n}} |D^{a}u(x)|^{2} dx + \sum_{|a|+|l|} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|D^{a}u(x) - D^{a}u(y)|^{2}}{|x - y|^{n+2l-2|l|}} dx dy\right)^{1/2}. \tag{1.3}$$

Если 2-ограниченная область, то, как обычно,

$$||u||_{l_{1}/2} = \left(\sum_{|\alpha| \le l/2} \int_{2} |D^{\alpha}u(x)|^{2} dx\right)^{l_{2}}.$$
 (1.4)

Пусть

$$\sum_{j=1}^{N} \varphi_j(x) = 1 \tag{1.5}$$

—конечное разбиение единицы в окрестности области \mathcal{Q} , где $\phi_j(x)$ — бесконечно гладкие функции. Тогда норма (1.4) эквивалентна норме

$$\left(\sum_{j=1}^N\|\phi_j\,u\,\|_{L_R^n}^2\right)^{i_{j_2}}.$$

В дальнейшем будем предполагать выполненным следующее: разбиение единицы (1.5) таково, что если носитель функции $\varphi_j(x)$ имеет с Γ либо с Γ_1 общие точки, то он целиком лежит внутри одной из областей U_j либо V_j покрытия границы. Пусть функции $\varphi_j(x)$ $(f=1,\cdots,r)$ —те из функций разбиения (1.5), носители которых пересекают Γ . Их сужения на Γ снова обозначим через $\varphi_j(x)$. Пространство $W_j(\Gamma)$ определим как пополнение пространства $C^*(\Gamma)$ по норме

$$\|u\|_{I_{r-T}}^{r} = \left(\sum_{j=1}^{r} \|\varphi_{j}u\|_{I_{r-j}^{2}, \mu^{n-1}}^{2}\right)^{r,s},$$
 (1.6)

гле норма $\|\phi_j u\|_{L,R^{n-1}}$ берется в локальных координатах. Аналогично определяется и пространство $W_2'(\Gamma_1)$ с нормой $\|u\|_{L,\Gamma_1}^*$.

Пусть, [a, b]—некоторый интервал оси t, конечный или бесконечный. Пространство $W_{v,t,2}^{l,k}(\Omega \times [a,b])$ определим как пополнение пространства $C^*(\Omega \times [a,b])$ по норме

$$||u(x,t)||_{L_{r}k}^{2} = \int_{a}^{b} ||u(x,t)||_{L_{r}}^{2} dt + \int_{2} ||u(x,t)||_{k,[a,b]}^{2} dx.$$
 (1.7)-

Норма функции $u\left(x',t\right)$ в пространстве $W_{x',t,2}^{I,k}\left(\Gamma \times [a,b]\right)$ определяется следующим образом

$$||u||_{t_{\epsilon}|k, \Gamma \times [a, b]}^{r} = \left(\int_{a}^{b} ||u||_{t_{\epsilon}|\Gamma}^{r} dt + \sum_{j=1}^{r} \int_{\Gamma} ||\varphi_{j}u||_{k, [a, b]}^{2} dx'\right)^{i/2}. \tag{1.8}$$

Обозначим через R_+^n полупространство в R^n , где $x_n \gg 0$, а через R_-^n — полупространство $x_n \ll 0$. Если $u \in W_2^t(R^n)$, то ее сужение на R_+^n принадлежит $W_2^t(R_+^n)$ и

$$||u||_{l_{i},R^{\beta}_{+}} \le C_{1}||u||_{l_{i},R^{\beta}}$$
 (1.9)

и, наоборот, если $u\in W_2^1(R_+^n)$, то ее можно продолжить на все R^n так, что

$$||Lu||_{k,R^n} \le C_2 ||u||_{k,R^n} (k=0,1,\cdots,l),$$
 (1.10)

где L — оператор продолжения функций с R_+^n на все R_-^n . Если l>1/2, то для $u\left(x\right)\in W_2^r(R_+^n)$ справедливо

$$\|u(x', 0)\|_{t \to t_2} \leqslant C_2 \|u\|_{t_1, R^n}.$$
 (1.11)

Если q-числовой параметр, то верно следующее неравенство

$$|q|^{l-k} ||u||_k \le C_{kl} \{||u||_l + |q|^l ||u||_0\} (0 < k < l),$$
 (1.12)

а также неравенство

$$|q|^{1/2} ||u(x', 0)||_0 \le C_4 (||u||_1 + |q|||u||_0),$$
 (1.12')

где нормы берутся по R^n либо по R^n_+ . Постоянные C_{kl} и C_4 не зависят от u и q (см. [3]). В дальнейшем нам понадобятся нормы, зависящие от числового параметра q

$$|||u|||_{l}^{2} = ||u||_{l}^{2} + |q|^{2l} ||u||_{0}^{2}.$$
 (1.13)

где нормы берутся по R^n либо по R^n_+ или R^n_-

Рассмотрим прямую сумму соболевских пространств $W_2^l = W_2^l(R^n) = W_2^l(R^n_-) + W_2^l(R^n_+)$. Всякую функцию $u(x) \in W_2^l$ можно представить в виде

$$u(x) = \begin{cases} u_1(x), & x \in R_+^n \\ u_2(x), & x \in R_+^n \end{cases}$$
(1.14)

где $u_1(x) \equiv 0$ при $x \in R^n_+$, $u_2(x) \equiv 0$ при $x \in R^n_-$.

Для функций вида (1.14) имеем

$$|||u|||_{l}^{2} = |||u_{1}||_{l, R_{-}^{n}}^{2} + |||u_{2}||_{l, R_{+}^{n}}^{2} = ||u_{1}||_{l, R_{-}^{n}}^{2} + + ||g||^{2} ||u_{1}||_{0, R_{-}^{n}}^{2} + ||u_{2}||_{c, R_{+}^{n}}^{2} + ||g||^{2} ||u_{2}||_{0, R_{+}^{n}}^{2}.$$

$$(1.15)$$

Неравенства (1.9)-(1.11) можно записать в виде

$$|||u|||_{l_{t},R_{\perp}^{n}} \leqslant C_{1} |||Lu|||_{l_{t},R^{n}}; |||Lu|||_{l_{t},R^{n}} \leqslant C_{2} |||u|||_{l_{t},R_{\perp}^{n}}.$$
 (1.16)

$$|||u(x',0)|||_{t^{-1/2}} \leqslant C_3^* |||u(x)|||_{t_{r}R_{-}^{n}},$$
 (1.17)

вычисляя $\|\phi_j u\|$ как нормы по полупространству, можно перенести неравенство (1.12) на нормы по Ω :

$$||| u ||_{l} = ||| u ||_{l, \Omega} = (|| u ||_{l, \Omega}^{2} + |q|^{2l} || u ||_{0, \Omega}^{2})^{1/s} \le C_{kl} \left(\sum_{k=0}^{l} |q|^{2k} || u ||_{l-k}^{2} \right)^{1/s} \le C_{5} || u ||_{l}.$$

$$(1.12'')$$

Положим

$$|||u|||' = |||u|||_{L/\Gamma}^* = (||u||_{L/\Gamma}^{2} + |q|^{2l}||u||_{0/\Gamma}^{2})^{1/\epsilon},$$
 (1.18)

$$|||u|||'' = |||u|||_{L^{\infty}\Gamma_{t}}^{*} = (||u||_{L^{\infty}\Gamma_{t}}^{*2} + |q|^{2t}||u||_{0,\Gamma_{t}}^{*2})^{1/2}.$$
 (1.18')

Из (1.17) получаем, что при целом l>1 функция из $W_2^l(\Omega)$ обладает граничными значениями и

$$|||u|||_{L^{-1/2}} \le C_5' |||u|||_{L^{\infty}\Omega}.$$
 (1.19)

В дальнейшем нам понадобятся пространства, введенные М. И. Вишком и М. С. Аграновичем [3]. Пусть $G=2\times (-\infty < t < +\infty)$, $G'=\Gamma\times (-\infty < t < +\infty)$. Всюду в дальнейшем будем считать, что I+1, $\lambda+^1/_2$, b—целые положительные числа. Пусть $\gamma>0$ фиксировано. Под пространством $P_{I,\ II2b}$ ($e^{-\tau t}$, G) понимается пространство функций u(x,t), определенных в G, равных пулю при t<0 и таких, что $e^{-\tau t}u(x,t)\in W^{I,\ I|2b}_{x,t/2}(G)$. За норму функции u(x,t) в $P_{I,\ I|2b}$ ($e^{-\tau t}$, G) примем норму $\|e^{-\tau t}u\|_{e,\ I/2b}$ (см. (1.7)). Аналогично определяется и пространство функций $P_{\lambda,\ \lambda/2b}$ ($e^{-\tau t}$, G') на G': это функции u(x',t), заданные на G', равные нулю при t<0, и такие, что $e^{-\tau t}u(x',t)\in W_{\lambda,\ \lambda/2b}$ (G'). За норму в $P_{\lambda,\ \lambda/2b}$ ($e^{-\tau t}$, G') принимается норма $\|e^{-\tau t}u(x',t)\|_{L^{1/2b}}$ (см. (1.8)).

Пусть теперь l—целое неотрицательное, $\gamma > 0$. Пространство $E_{h,1/20}$ (γ , Ω) определяется как совокупность функций U(x,p), определенных при почти всех x и p, $\mathrm{Re}\,p \gg \gamma$, и обладающих свойствами:

1) при всех p, Re $p > \gamma$, и почти всех p, Re $p = \gamma$,

$$U(x, p) \in W_2^l(\Omega),$$

2) при почти всех $x\in \Omega$ функция $U(x,\,p)$ задана и голоморфна при $\mathrm{Re}\,p\!>\!0$ и

$$\sup \int_{\sigma>\tau} |U(x, \sigma+i\tau)|^2 |\sigma+i\tau|^{1/6} d\tau < +\infty$$

и для $D_x^\alpha U(x, p)$ при $|\alpha| \leqslant l$

$$\sup_{x>\tau}\int_{T}|D_{x}^{\alpha}U(x,p)|^{2}d\tau<+\infty,$$

3)
$$||U(x, p)||_{l_{\tau}/l_{2b}}^{2} = \int_{q-\tau} [||U||_{l_{\tau}/2}^{2} + |p|^{l/b}||U||_{0,2}^{2}] d\tau < +\infty.$$

Аналогичным образом определяется пространство $E_{\lambda, \lambda/2b}$ (γ, Γ): это совокупность функций U(x', p), определенных при почти всех $x' \in \Gamma$ и $\text{Re } p \geqslant \gamma$, таких, что

1) при всех p, $\operatorname{Re} p > \gamma$ и почти всех p, $\operatorname{Re} p = \gamma$,

$$U(x', p) \in W_2^{\wedge}(\Gamma),$$

2) при почти всех $x' \in \Gamma$

$$\sup_{a>\gamma} |U(x', p)|^2 |a+i\tau|^{\lambda/b} d\tau < +\infty,$$

3)
$$\|U(x', p)\|_{\lambda_{\tau}^{2}\lambda/2b}^{2} = \int_{z=\tau}^{\infty} [\|U\|_{\lambda_{\tau}}^{2} + \|p\|_{\lambda/b} \|U\|_{0, \Gamma}^{2}] d\tau < +\infty$$

(см. (1.6)). В [3] доказана следующая теорема.

Пусть т-положительное число. Тогда преобразование Лапласа

$$U(x, p) = Lu(x, t) = \int_{0}^{\infty} e^{-pt} u(x, t) dt$$

взаимно однозначно и взаимно непрерывно отображает пространство $P_{l,\ l/2b}$ ($e^{-\gamma t}$, G) на пространство $E_{l,\ l/2b}$ (γ , Ω) (l—целое неотрицательное), а пространство $P_{\lambda,\ \lambda/2b}$ ($e^{-\gamma t}$, G') на $E_{\lambda,\ \lambda/2b}$ (γ , Γ) ($\lambda + {}^{1}\!/_{2}$ —целое положительное).

§ 2. Пусть в области Q^T задан линейный 2b—параболический по И. Г. Петровскому [4] оператор порядка 2m с разрывными коэффициентами

$$A(x, D_x, \partial/\partial t) = \begin{cases} A^1(x, D_x, \partial/\partial t), (x, t) \in \Omega_1^T \\ A^2(x, D_x, \partial/\partial t), (x, t) \in \Omega_2^T \end{cases}$$

 $D_x = D_{x_1} \cdots D_{x_n}; \ D_{x_k} = -i \, \partial/\partial x_k, \ A^i$ — операторы в частных производных с коэффициентами, зависящими бесконечно гладким образом от x в Ω_t^T (i=1,2). Порядки операторов A^I равны 2m, а порядок члена $D_x^a \, \partial^\beta/\partial t^\beta$ по определению $2\,b$ — параболичности равен $a_1+\cdots+a_n+2b\,\beta$. Пусть функция $f_1(x,t)$ задана при $(x,t)\in\Omega_1^T$, а функция $f_2(x,t)$ при $(x,t)\in\Omega_2^T$. Положим

$$u(x, t) = \begin{cases} u_1(x, t), & (x, t) \in \Omega_1^T \\ u_2(x, t), & (x, t) \in \Omega_2^T \end{cases}$$

где $u_i(x, t) = 0$ при $(x, t) \in \Omega^T / \Omega_i^T$ (i = 1, 2). При $(x, t) \in S_{\Gamma_i}$ под $u_i(x, t)$ понимается предельное значение u(x, t) со стороны $\Omega_i^T (i = 1, 2)$. Рассмотрим следующие уравнения

$$A^{1}(x, D_{x}, \partial/\partial t) u_{1}(x, t) = f_{1}(x, t),$$
 (2.1)

$$A^{2}(x, D_{x}, \partial/\partial t) u_{2}(x, t) = f_{2}(x, t)$$
 (2.2)

при следующих граничных условиях

$$B_i(x, D_x, \partial/\partial t) u_1(x, t)|_{S_{\Gamma_i}} + C_i(x, D_x, \partial/\partial t) u_2(x, t)|_{S_{\Gamma_i}} = g_i(x'', t),$$

 $i = 1, \dots, 2m; \quad x'' \in \Gamma_i$
(2.3)

$$R_j(x, D_x, \partial/\partial t) u_2(x, t) |_{S_{\Gamma}} = \psi_j(x', t); \quad j = 1, \dots, m; \ x' \in \Gamma.$$
 (2.4)

Предполагается, что коэффициенты оператора B_i бесконечно дифференцируемы в $\overline{\Omega}_1^T$, коэффициенты операторов C_i и R_i бесконечно дифференцируемы в $\overline{\Omega}_2^T$. Порядок B_i и C_i равен m_i , а порядок R_i равен r_i .

К граничным условиям добавляются начальные условия

$$u|_{t=0} = \varphi_0(x), \cdots, \frac{\partial^{x-1}u}{\partial t^{x-1}}\Big|_{t=0} = \varphi_{x-1}(x) \quad (m = b \times).$$
 (2.5)

Если допустить, что все $\varphi_{\bf k}(x)\equiv 0$ и $T=+\infty$, то формальное преобразование Лапласа приводит задачу (2.1)-(2.5) к стационарной задаче

$$A^{1}(x, D_{x}, p) U_{1}(x, p) = F_{1}(x, p), x \in \Omega_{1},$$
 (2.1')

$$A^{2}(x, D_{x}, p) U_{2}(x, p) = F_{2}(x, p), x \in \Omega_{2}$$
 (2.2')

с граничными условиями

$$B_j(x, D_x, p) U_1(x, p)|_{\Gamma_i} + C_j(x, D_x, p) U_2(x, p)|_{\Gamma_i} = G_j(x'', p),$$
 (2.3')
 $j = 1, \dots, 2m; \quad x'' \in \Gamma_1$

$$R_{I}(x, D_{x}, p) U_{2}(x, p)|_{\Gamma} = \Psi_{I}(x', p), \quad j = 1, \dots, m; \quad x' \in \Gamma, \quad (2.4')$$

гле p—комплексный параметр, пробегающий правую полуплоскость $\operatorname{Re} p \geqslant 0$. Положим $p = q^{2b}$ и вместо параметра p будем в дальнейшем рассматривать параметр q, изменяющийся в угле Q: $\left|\arg q\right| \leqslant \frac{\pi}{4 \, h}$.

План наших дальнейших рассмотрений таков: сначала мы для стационарной (эллиптической) задачи (2.1')—(2.4') доказываем теорему существования и единственности в пространствах $E_{I_{\bullet}\ I/2b}$, потом, воспользовавшись изоморфизмом пространств $E_{I_{\bullet}\ I/2b}$ и $P_{I_{\bullet}\ I/2b}$ получаем однозначную разрешимость параболической задачи (2.1)—(2.5) в пространствах $P_{I_{\bullet}\ I/2b}$ (теорема 6).

Разрешимость задачи (2.1')—(2.4') доказывается в общем по тому же плану, как это обычно делается для эллиптических задач: сначала

для случая однородных операторов A^i , B_i , C_i , R_j с постоянными коэффициентами в полупространстве доказывается априорная оценка и
существование, потом эти результаты переносятся на случай операторов с малоизменяющимися коэффициентами, и, наконец, с помощью разбиения единицы "получается окончательный результат для
операторов с переменными коэффициентами

Граничные задачи для эллиптических уравнений с разрывными коэффициентами изучались в ряде работ, из которых мы упомянем недавно появившиеся интересные работы Я. А. Ройтберга и З. Г. Шефтеля [10] и З. Г. Шефтеля [11] (см. также цитированную там литературу). Заметим, что в рассматриваемом нами случае наличие параметра q позволяет получить априорную оценку (теорема 2), из которой сразу следует единственность решения задачи (2.1')—(2.4'), в то время как из оценки вида

$$||U||_{l} \leq K \{||F_{1}||_{l-2m} + ||F_{2}||_{l-2m} + \Sigma ||G_{l}||_{l-m_{f}-1,s} + \Sigma ||\Psi_{l}||_{l-m_{f}-1,s} + + ||U||_{0}\},$$

с помощью которой получаются основные результаты в [10], [11], единственность не следует. Кроме того, для достаточно больших по модулю q мы доказываем существование решения при любых правых частях, тогда как в [10], [11] существование решения доказывается при выполнении некоторых дополнительных условий, налагаемых на правые части.

Теорема существования и единственности для смешанных краевых задач для параболических уравнений (и систем) с бесконечно гладкими коэффициентами во всем Q^T с условиями вида (2.4) на Γ и условиями Коши (2.5) получена в работах М. С. Аграновича и М. И. Вишика [3], [5]. Отметим, что общей теорией разрешимости смешанных задач для параболических уравнений занимались Т. Я. Загорский [6], С. Д. Эйдельман [7], Л. Н. Слободецкий [8] и другие

Используемые нами методы близки к методам, развитым в работах [3], [5], [9]. Доказательство некоторых теорем, сформулированных в настоящей работе, в частности в § 4 и § 5, схоже с доказательством аналогичных теорем из [3], поэтому мы ограничимся только формулировками этих теорем. Подробно (в § 3) мы остановимся только на случае, когда коэффициенты операторов задачи (2.1')-(2.4') постоянные, сами операторы однородны, а граничные условия задаются на гиперплоскости $x_n = 0$.

§ 3. Рассмотрим уравнения

$$A^{1}(D_{x}, q) u_{1}(x, q) = f_{1}(x, q); (x_{n} < 0)$$
 (3.1)

$$A^{2}(D_{x}, q) u_{z}(x, q) = f_{z}(x, q); (x_{n} > 0),$$
 (3.2)

где $A^1(D_x, q)$ и $A^2(D_x, q)$ —однородные порядка 2m эллиптические операторы с постоянными коэффициентами, числовой параметр q изменяется в угле Q.

При $x_n = 0$ зададим условия

$$B_j(D_x, q) u_1(x, q) |_{x_n = -0} + C_j(D_x, q) u_2(x, q) |_{x_n = +0} = g_j(x', q),$$

 $(j = 1, \dots, 2m)$ (3.3)

 $x' = (x_1, \dots, x_{n-1}); B_i(\xi, q)$ и $C_i(\xi, q)$ — однородные полиномы по $\xi = (\xi_1, \dots, \xi_n)$ порядка m_i с постоянными коэффициентами. На операторы $A^1(D_x, q)$ и $A^2(D_x, q)$ наложим следующее условие:

Условие 1. $A^{t}(\xi, q) \neq 0$ (i = 1, 2) при $\text{Im } \xi = 0$, $|\xi| + |q| \neq 0$. При n = 1 дополнительно потребуем, чтобы уравнения $A^{t}(\xi', \lambda, q) = 0$ (i = 1, 2) имели бы ровно m корней с положительной мнимой частью и m с отрицательной мнимой частью.

Из условия 1 следует, что многочлены $A^1(\xi',\lambda,q)$ и $A^2(\xi',\lambda,q)$ можно представить в виде

$$A^{1}(\xi', \lambda, q) = M_{1}^{+}(\xi', \lambda, q) M_{1}^{-}(\xi', \lambda, q),$$

$$A^{2}(\xi', \lambda, q) = M_{2}^{+}(\xi', \lambda, q) M_{2}^{-}(\xi', \lambda, q),$$

rae

$$M_{i}^{\pm}(\xi', \lambda, q) = \prod_{k=1}^{m} (\lambda - \lambda_{ik}^{\pm}),$$

а λ_{lk}^{\pm} —корни A' (ξ' , λ , q) с положительной (отрицательной) мнимой частью. При q=0 условие 1 превращается в условие эллиптичности операторов $A^1(D_x, 0)$ и $A^2(D_x, 0)$.

Положим $f_1(x, q) = f_2(x, q) = 0$. Сделаем преобразование Фурье по $x' = (x_1, \cdots, x_{n-1}) \rightarrow \xi' = (\xi_1, \cdots, \xi_{n-1})$, получим

$$A^{1}(\xi', -i\frac{d}{dx_{n}}, q) v_{1}(\xi', x_{n}, q) = 0,$$
(3.1')

$$A^{2}(\xi', -i\frac{d}{dx_{n}}, q) v_{2}(\xi', x_{n}, q) = 0,$$
 (3.2')

$$B_i(\xi', -i\frac{d}{dx_n}, q) v_1(\xi', x_n, q)|_{x_n=-0} +$$

$$+C_{j}(\xi', -i\frac{d}{dx_{n}}, q) v_{2}(\xi', x_{n}, q) |_{x_{n}-+0} = g_{j}(\xi', q) \ (j = 1, \dots, 2m), \ (3.3')$$

rae $\widetilde{g_j} = F'g_j$.

Через $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$ будем обозначать пространство устойчивых решений уравнений (3.1') и (3.2'), то есть пространство функций $v(\xi', x_n, q)$, имеющих вид

$$v(\xi', x_n, q) = \begin{cases} v_1(\xi', x_n, q), & (x_n < 0) \\ v_2(\xi', x_n, q), & (x_n > 0) \end{cases}$$
(3.4)

и являющихся такими решениями (3.1') и (3.2'), которые стремятся к нулю, когда $x_n \to \pm \infty$. В частности, так как v_1 и v_2 суть решения

обыкновенных дифференциальных уравнений с постоянными коэффициентами, а именно, уравнений

$$M_1^-(\xi', -i\frac{d}{dx_n}, q) v_1(\xi', x_n, q) = 0,$$

 $M_2^+(\xi', -i\frac{d}{dx_n}, q) v_2(\xi', x_n, q) = 0,$

то, очевидно, что базис в \mathcal{W}_1 могут составлять экспоненты вида $e^{i\lambda_1^-,k^{-X_n}}(k=1,\cdots,m)$, а в \mathcal{W}_2- экспоненты вида $e^{i\lambda_2^+,k^{-X_n}}(k=1,\cdots,m)$, в случае кратных корней эти экспоненты умножаются на некоторые многочлены от x_n .

Условие 2. Задача (3.1')—(3.3') имеет одно и только одно решение вида (3.4) для любых правых частей $\tilde{g}_j(\xi', q)$, принадлежащее $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$.

Условие 2 может быть записано в следующей алгебраической форме: если e_1^-, \dots, e_m^- — базис в \mathcal{W}_1 , а e_1^+, \dots, e_m^+ — базис в \mathcal{W}_2 , то условие 2 эквивалентно условию

$$\det \left\{ B_i(\xi', -i\frac{d}{dx_n}, q) e_k^- \Big|_{X_n \to -0} + C_i(\xi', -i\frac{d}{dx_n}, q) e_k^+ \Big|_{X_n \to +0} \right\} \neq 0$$

$$\operatorname{Im} \xi = 0, \quad |\xi| + |q| \pm 0, \quad q \in Q.$$

Легко проверяется, что функции

$$e_{k}^{-} = \int_{\gamma^{-}}^{\gamma^{-}} \frac{e^{i\lambda x_{n}} \chi^{k-1}}{M_{1}^{-}(\xi', \lambda, q)} d\lambda, \quad (x_{n} < 0), \quad (k = 1, \dots, m),$$

$$e_{k}^{+} = \int_{\gamma^{+}}^{\gamma^{+}} \frac{e^{i\lambda x_{n}} \chi^{k-1}}{M_{2}^{+}(\xi', \lambda, q)} d\lambda, \quad (x_{n} > 0), \quad (k = 1, \dots, m),$$

где γ^- (γ^+) — контур, содержащий все кории уравнения $M_1^-(\xi', \lambda, q) = 0$ ($M_2^+(\xi', \lambda, q) = 0$), образуют базис в $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$.

Построим теперь так называемый канонический базис в 272:

$$\Omega_{j}(\xi', x_{n}, q) = \begin{cases} \Omega_{1, j}^{-}(\xi', x_{n}, q), & (x_{n} < 0) \\ \Omega_{2, j}^{+}(\xi', x_{n}, q), & (x_{n} > 0), \end{cases} (j = 1, \dots, 2m)$$

такой, что

$$B_{j}(\xi', x_{n}, q) \Omega_{1,k}^{-}|_{x_{n}=-0} + C_{j}(\xi', x_{n}, q) \Omega_{2,k}^{+}|_{x_{n}=+0} = \delta_{jk},$$
 (3.5)
 δ_{jk} — символ Кронекера. Тогда любое решение (3.1')—(3.3') с произвольными правыми частями $g_{j}(\xi', q)$ запишется в виде

$$v(\xi', x_n, q) = \begin{cases} v_1(\xi', x_n, q) = \sum_{j=1}^{2m} \Omega_{1,j}^{-}(\xi', x_n, q) \widetilde{g}_j(\xi', q), (x_n < 0). \\ v_2(\xi', x_n, q) = \sum_{j=1}^{2m} \Omega_{2,j}^{+}(\xi', x_n, q) \widetilde{g}_j(\xi', q), (x_n > 0). \end{cases}$$

$$(3.4')$$

Действительно

$$B_{j}(\xi', -i \frac{d}{dx_{n}}, q) \sum_{k=1}^{2m} Q_{1,k}^{-} \widehat{g}_{\lambda}(\xi', q)|_{x_{n}=-0} +$$

$$+C_{i}(\xi', -i\frac{d}{dx_{n}}, q) \sum_{k=1}^{2m} Q_{2,k}^{+} \widetilde{g}_{k}(\xi', q) |_{x_{n}=+0} = \delta_{jk} \widetilde{g}_{j}(\xi', q) = \widetilde{g}_{j}(\xi', q),$$

В дальнейшем нам понадобится интегральное представление канонического базиса. Функции Ω_i будем искать в виде

$$\Omega_{j}(\xi', x_{n}, q) = \begin{cases}
\Omega_{1,j}^{-} = \sum_{k=1}^{m} \alpha_{k}^{j} e_{k}^{-} \\
\Omega_{2,j}^{+} = \sum_{k=1}^{m} \beta_{k}^{j} e_{k}^{+}
\end{cases} (3.6)$$

Подставляя (3.6) в (3.5) и решая полученную систему уравнений относительно α_k^j и β_k^j $(k=1,\cdots m)$ при каждом j $(j=1,\cdots,2m)$ по формулам Крамера, получим

$$\Omega_{j}(\xi', x_{n}, q) = \begin{cases}
\int_{\tau^{-}}^{\tau} \frac{e^{i\lambda x_{n}} N_{j}^{1}(\xi', \lambda, q)}{M_{1}^{-}(\xi', \lambda, q)} d\lambda; & (x_{n} < 0) \\
\int_{\tau^{+}}^{\tau} \frac{e^{i\lambda x_{n}} N_{j}^{2}(\xi', \lambda, q)}{M_{2}^{+}(\xi', \lambda, q)} d\lambda; & (x_{n} > 0),
\end{cases} (3.7)$$

тде функции N_J^1 и N_J^2 — бесконечно гладкие однородные степени $m-m_J-1$ по совокупности аргументов, являющиеся полиномами по λ .

В дальнейшем в этом § будем считать, что функция v (ξ', x_n, q) нмеет вид (3.4), и что нормы $\|u_1\|$ и $\|\|u_1\|\|$ берутся по полупространству R_+^n , а нормы $\|u_2\|$ и $\|\|u_2\|\|$ по полупространству R_+^n . Положим

$$l \gg \max(2m, m_j + 1).$$
 (3.8)

Теорема 1. Пусть выполнены условия 1 и 2 и пусть целое 1 удовлетворяет (3.8). Тогда, при ненулевых $q \in Q$ и любых $f_1(x, q) \in W_2^{l-2m}(R_-^n), f_2(x, q) \in W_2^{l-2m}(R_+^n)$ существует одно и только одно решение

$$u(x, q) = \begin{cases} u_1(x, q), & (x_n < 0) \\ u_2(x, q), & (x_n > 0) \end{cases}$$

задачи (3.1), (3.2), принадлежащее $W_2^1(\mathbb{R}^n)$. При этом при $|q| \geqslant q_0$ $(q_0-$ произвольное положительное число) имеет место двусторонняя априорная оценка

$$||u||_{l} \leqslant C \left\{ ||f_{1}||_{l-2m, R_{-}^{n}} + ||f_{2}||_{l-2m, R_{+}^{n}} + \sum_{j=1}^{2m} ||g_{j}||_{l-m_{j}-\nu_{d}}^{\nu} \right\} \leqslant C' ||u||_{l}$$

или (см. (1.13))

$$\|u\|_{l} + \|q\|^{l} \|u\|_{0} \leq C \|\|f_{1}\|_{l-2m} + \|f_{2}\|_{l-2m} + \|q\|^{l-2m} (\|f_{1}\|_{0} + \|f_{2}\|_{0}) + \sum_{i=1}^{2m} (\|g_{j}\|_{l-m_{i}-i/2} + \|q\|^{l-m_{i}-i/2} \|g_{j}\|_{0}) \| \leq C' (\|u\|_{l} + \|q\|^{l} \|u\|_{0}).$$

$$(3.9)$$

Доказательство. Очевидно, что

$$\|A^{1}(D_{x}, q)u_{1}\|_{l-2m} \leqslant C_{0} \sum_{k=0}^{2m} \|q\|^{k} \|u_{1}\|_{l-k},$$

откуда в силу (1.12") сразу следует

$$|||f_1||_{t-2m} \le C_2 |||u_1||_t$$
, (3.10)

аналогично и

$$|||f_2||_{t-2m} \le C_k |||u_2||_t$$
. (3.11)

Точно так же легко заметить, что

$$|||B_{i}(D_{x}, q) u_{1}||_{t=m_{i}} + |||C_{i}(D_{x}, q) u_{2}||_{t=m_{i}} \leq C_{9}(||u_{1}||_{t} + ||u_{2}||_{t}), \quad (3.12)$$

но в силу (1.17)

$$||B_{j}(D_{x}, q)u_{1}||_{l-m_{j}-\nu_{3}} \leq C_{3}||B_{j}(D_{x}, q)u_{1}||_{l-m_{j}}$$
 (3.13)

$$\|C_{j}(D_{x}, q)u_{2}\|_{l-m_{j}^{*}-l_{j}} \le C_{3}\|C_{j}(D_{x}, q)u_{2}\|_{l-m_{j}}.$$
 (3.14)

Из (3.10)—(3.14) сразу следует второе из неравенств (3.9). Для доказательства первого из неравенств (3.9) сведем задачу (3.1)—(3.3) к случаю, когда $f_1 \equiv f_2 \equiv 0$.

Пусть L_1 — оператор продолжения f_1 с R_-^n на R^n и L_2 — оператор продолжения f_4 с R_+^n на все R_-^n . Рассмотрим уравнения

$$A^{1}(D_{x}, q) u_{1}(x, q) = L_{1}f_{1}(x, q),$$

 $A^{2}(D_{x}, q) u_{2}(x, q) = L_{2}f_{2}(x, q).$

При иенулевых $q \in Q$ частными решениями этих уравнений будут функции

$$u_1^0 = F^{-1}(A^1(\xi, q))^{-1}FL_1f_1,$$
 (3.15)

$$u_2^0 = F^{-1} (A^2(\xi, q))^{-1} F L_2 f_2.$$
 (3.16)

Так как операторы $A^{I}\left(D_{x},\ q\right)$ — однородные, степени $2\,m$, то мы имеем

$$|Fu_1^0| \leqslant C_{10} (|\xi| + |q|)^{-2m} |FL_1 f_1|$$

 $|Fu_2^0| \leqslant C_{10} (|\xi| + |q|)^{-2m} |FL_2 f_2|$

BAH

$$(1+|\xi|^{2l}+|q|^{2l})|Fu_1^0| \leq C_{11}(1+|\xi|^{2l-2m}+|q|^{2l-2m})|FL_1f_1|^2,$$

$$(1+|\xi|^{2l}+|q|^{2l})|Fu_2^0| \leq C_{11}(1+|\xi|^{2l-2m}+|q|^{2l-2m})|FL_2f_2|^2,$$

Проинтегрировав по ξ по всему R^* , получим

$$\begin{split} & \| \ u_1^0 \|_{l_1,R^R} \leqslant C_{12} \| \ L_1 f_1 \|_{l_1,R^R} \\ & \| \ u_2^0 \|_{l_1,R^R} \leqslant C_{12} \| \ L_2 f_2 \|_{l_1,R^R}. \end{split}$$

Так как u_1^0 и u_2^0 принадлежат $W_2^l(R^n)$, то их сужения на R^n (соответствению на R^n) принадлетат $W_2^l(R^n)$ ($W_2^l(R^n)$), так что согласню (1.16)

$$||u_1^0||_{I_{t,R^0}} \le C_{12} ||f_1||_{t-2m,R^0},$$
 (3.17)

$$\| u_2^0 \|_{l_1, \mathbb{R}^n} \le C_{12} \| f_2 \|_{l_1 - 2m, \mathbb{R}^n}$$
 (3.18)

Положим

$$u^{0}(x, q) = \begin{cases} u_{1}^{0}(x, q), & (x_{n} < 0) \\ u_{2}^{0}(x, q), & (x_{n} > 0) \end{cases}$$

H

$$u(x, q) = u^{0}(x, q) + w(x, q); \ w(x, q) = \begin{cases} w_{1}(x, q), \ (x_{n} < 0) \\ w_{2}(x, q), \ (x_{n} > 0). \end{cases}$$

Тогда функция $w\left(x,\ q\right)$ будет удовлетворять уравнениям

$$A^{1}(D_{x}, q) w_{1}(x, q) = 0,$$

 $A^{2}(D_{x}, q) w_{2}(x, q) = 0,$

а при $x_n = 0$ — граничным условиям

$$B_j(D_x, q)w_1(x, q)|_{x_n=-0} + C_j(D_x, q)w_2(x, q)|_{x_n=+0} = g_j(x', q) - g_j^0(x', q), \quad (j = 1, \dots, 2m)$$

где

$$g_j^0(x', q) = B_j(D_x, q) u_1^0(x, q) |_{x_0 = -0} + C_j(D_x, q) u_2^0(x, q) |_{x_0 = +0}.$$

Теперь достаточно получить оценку

$$\|w\|_{l} \leqslant C_{14} \sum_{j=1}^{2m} \|g_{j} - g_{j}^{0}\|_{l-m_{j}-l_{0}}^{l},$$
 (3.19)

так как отсюда и из (3.17), (3.18) будет следовать

$$|\!|\!|\!| \, u \, |\!|\!|_{l} \ll |\!|\!| \, u^{\scriptscriptstyle 0} \, |\!|\!|_{l} + |\!|\!| \, w \, |\!|\!|_{l} \ll |\!|\!| \, u^{\scriptscriptstyle 0}_{\scriptscriptstyle 1} \, |\!|\!|_{l} + |\!|\!| \, u^{\scriptscriptstyle 0}_{\scriptscriptstyle 2} \, |\!|\!|_{l} + |\!|\!| \, w \, |\!|\!|_{l} \ll$$

$$< C_{15}(\|f_1\|_{l-2m} + \|f_2\|_{l-2m} + \sum_{j=1}^{2m} \|g_j\|_{l-m_j-\gamma_i}^j + \sum_{j=1}^{2m} \|g_j^0\|_{l-m_j-\gamma_j}^j).$$

но так же, как и при доказательстве второго из неравенств (3.9),

$$\|g_j^0\|_{l-m_j-l_{12}}^i \le C_{16} \|u^0\|_l \le C_{17} (\|f_1\|_{l-2m} + \|f_2\|_{l-2m}).$$

Отсюда сразу следует первое из неравенств (3.9) и для завершения доказательства нам остается доказать оценку (3.19). Функция $v(\xi', x_n, q)$ из (3.4') является, по крайней мере, при почти всех ξ' и q устойчивым решением задачи (3.1') — (3.3'). Используя представление (3.4'), нетрудно найти вид функции

$$w(x, q) = \begin{cases} w_1(x, q) = (F')^{-1} \sum_{j=1}^{2m} \Omega_{1,j}^{-}(\widetilde{g}_j - \widetilde{g}_j^0), & (x_n < 0) \\ w_2(x, q) = (F')^{-1} \sum_{j=1}^{2m} \Omega_{2,j}^{+}(\widetilde{g}_j - \widetilde{g}_j^0), & (x_n > 0). \end{cases}$$
(3.20)

Оценим сейчас выражение $\Omega_{2,j}^+(g_j-g_j^0)$. Для этого воспользуемся интегральным представлением канонического базиса (3.7):

$$\Omega_{2,j}^{\pm} = \int_{\tau^{\pm}} \frac{e^{i\lambda x_n} N_i^2(\xi', \lambda, q)}{M_2^{\pm}(\xi', \lambda, q)} d\lambda,$$

Дифферєнцируя по x_n под интегралом α раз и делая замену переменных $\lambda = \lambda_1 V |\xi|^2 + |q|^2$, получим

$$\left| \frac{\partial^{n} \Omega_{2, j}^{+}}{\partial x_{n}^{n}} \right| \leq C_{18} \left(|\xi'|^{2} + |q|^{2} \right)^{n-m_{j}} e^{-C_{18} x_{n} |V| |\xi|^{n} + |q|^{2}}.$$

.Интегрируя по x_n , имеем

$$\int_{0}^{\varepsilon} \left| \frac{\partial^{\alpha} \mathcal{Q}_{2,f}^{+}}{\partial x_{n}^{\alpha}} \right|^{2} dx_{n} \ll C_{20} \left(|\xi'|^{2} + |q|^{2} \right)^{\alpha - m_{f} - 1},$$

Теперь, если только $|q| > q_0 > 0$, то

$$\sum_{\alpha+\beta\leqslant l} |\xi'|^{2\beta} \int_{0}^{\infty} |D_{x_{n}}^{\alpha} \Omega_{2,j}^{+}|^{2} dx_{n} + |q|^{2l} \int_{0}^{\infty} |\Omega_{2,j}^{+}|^{2} dx_{n} \leqslant$$

$$\leqslant C_{21} (|\xi'|^{2} + |q|^{2})^{l-m_{j}-l_{0}} \leqslant C_{22} (1 + |\xi'|^{2l-2m_{j}-1} + |q|^{2l-2m_{j}-1}).$$
(3.21)

Умножая обе части (3.21) на $\widetilde{g}_{j}(\xi', q) - \widetilde{g}_{j}^{0}(\xi', q)$ и интегрируя по ξ' , по определению нормы получим

$$\| (F')^{-1} \left\{ | \mathbf{Q}_{2,j}^{+} (\widetilde{\mathbf{g}}_{j} - \widetilde{\mathbf{g}}_{j}^{0})| \right\} \|_{l_{-R_{j}}^{n}}^{2} \leqslant C_{23} \left(\| \mathbf{g}_{j} \|_{l_{-m_{j}}^{-1/2}}^{2} + \| \mathbf{g}_{j}^{0} \|_{l_{-m_{j}}^{-1/2}}^{2} \right).$$

Аналогично оценивается и выражение $\Omega_{1,l}^{-}(g_{l}-g_{l}^{0})$. Отсюда непосредственно следует оценка (3.19). Легко видеть, что функции

$$u_{1}(x, q) = \begin{cases} F^{-1} u_{1}^{0} + \sum_{j=1}^{2m} (F')^{-1} \mid \Omega_{1, j}^{-}(\widetilde{g}_{j} - \widetilde{g}_{j}^{0}) \mid, & (x_{n} < 0) \\ 0, & (x_{n} > 0) \end{cases}$$

$$u_{2}(x, q) = \begin{cases} 0, & (x_{n} < 0) \\ F^{-1} u_{2}^{0} + \sum_{j=1}^{2m} (F')^{-1} \mid \Omega_{2, j}^{+}(\widetilde{g}_{j} - \widetilde{g}_{j}^{0}) \mid, & (x_{n} > 0) \end{cases}$$

определяют решение задачи (3.1)—(3.3) при $f_1(x,q) \in W_2^{l-2m}(R^n)$, $f_{\mathfrak{t}}(x,q) \in W_2^{l-2m}(R^n)$, $g_j(x',q) \in W_2^{l-m_j-s_{j_2}}(R^{n-1})$ и $q \in Q$, принадлежящее $W_2^l(R^n)$. Теорема доказана.

В случае одного уравнения

$$A(D_x, q)u(x, q) = f(x, q),$$
 (3.22)

рассматриваемого в полупространстве $x_n > 0$ с граничными условиями при $x_n = 0$

$$R_j(D_x, q) u(x, q) |_{x_n=0} = \psi_j(x', q); \quad (j = 1, \dots, m),$$
 (3.23)

тде A и R_J , как и в теореме 1,—однородные дифференциальные операторы с постоянными коэффициентами (порядок A равен 2m, порядок R_J равен r_J) при следующих условиях:

Условие 1'. $A(\xi, q) \neq 0$ при $\text{Im } \xi = 0$, $|\xi| + |q| \neq 0$, $q \in Q$. При n = 1 дополнительно предполагается, что половина корней уравнения $A(\xi', \lambda, q) = 0$ лежит в верхней полуплоскости, а половина — в нижней.

Условие 2'. Задача

$$A(\xi', -i \frac{d}{dx_n}, q) v(\xi', x_n, q) = 0$$

$$R_j(\xi', -i \frac{d}{dx_n}, q) v(\xi', x_n, q)|_{x_n = 0} = \psi_j(\xi', q)$$

$$(j = 1, \dots, m)$$

имеет одно и только одно решение в пространстве устойчивых решений, верна

Теорема (М. С. Агранович, М. И. Вишик [9]). При ненулевых $q \in Q$ для любых $f \in W_2^{l-2m}(R_+^n)$, $\psi_j \in W_2^{l-r_j-l_2}(R^{n-1})$ существует одно и только одно решение u(x, q) задачи (3.22), (3.23), принадлежащее $W_2^l(R_+^n)$. При этом имеет место оценка

$$\| u \|_{l} \le C (\| f \|_{l-2m} + \sum_{j=1}^{m} \| \psi_{j} \|_{l-r_{j}-V_{2}}^{r}) \le C' \| u \|_{l},$$

где нормы берутся по полупространству R...

§ 4. Рассмотрения предыдущего параграфа позволяют получить некоторые результаты для задачи (2.1')-(2.4') в областях 2_1 и 2_1 (обозначения и условия на Γ и Γ_1 см. § 1).

Рассмотрим уравнения

$$A^{1}(x, D_{x}, q) u_{1}(x, q) = f_{1}(x, q); x \in \Omega_{1}$$
 (4.1)

$$A^{2}(x, D_{r}, q) u_{2}(x, q) = f_{2}(x, q); x \in \Omega_{2}$$
 (4.2)

с граничными условиями

$$B_{j}(x, D_{x}, q) u_{1}(x, q)|_{\Gamma_{1}} + C_{j}(x, D_{x}, q) u_{2}(x, q)|_{\Gamma_{3}} = g_{j}(x'', q)$$

$$(j = 1, \dots, 2m), \quad x'' \in \Gamma_{1}$$

$$R_{j}(x, D_{x}, q) u_{2}(x, q)|_{\Gamma} = \psi_{j}(x', q). \tag{4.4}$$

 $(j=1,\cdots,m), \quad x'\in\Gamma$

Предполагается, что коэффициенты операторов A^1 и B_i бесконечно гладки в $\overline{\Omega}_1$, а коэффициенты операторов A^2 , C_j , R_j в $\overline{\Omega}_2$. Порядки A^1 и A^2 равны 2m, порядки B_j и C_j равны m_j , а порядок R_i равен r_i . Через A^0 , A^0 , B_{i0} , C_{i0} , R_{i0} будем обозначать главные части операторов A^1 , A^2 , B_j , C_j , R_j , параметр $q \in Q$. Потребуем выполнения следующих условий.

Условие 1. $A_0^i(x,\xi,q)\neq 0$ (i=1,2) при $x\in \Omega_i$, $q\in Q$, $\text{Im }\xi=0$, $|\xi|+|q|\neq 0$. При n=1 дополнительно предполагается, что корни многочленов $A_0^i(x,\lambda,q)$ (i=1,2) поровну распределяются между верхней и нижней полуплоскостью.

Условие 2.

а) Задача

$$A_0^1(0, \xi', -i\frac{d}{dx_n}, q) v_1(\xi', x_n, q) = 0, (x_n < 0)$$

$$A_0^2(0, \xi', -i \frac{d}{dx_n}, q) v_2(\xi', x_n, q) = 0, (x_n > 0)$$

с граничными условиями

$$B_{j}(0, \xi', -i\frac{d}{dx_{n}}, q) v_{1}(\xi', x_{n}, q)|_{x_{n}=-0} + \\ +C_{j}(0, \xi', -i\frac{d}{dx_{n}}, q) v_{2}(\xi', x_{n}, q)|_{x_{n}=+0} = g_{j}(\xi', q); (j=1, \dots, 2m)$$

имеет одно и только одно решение в пространстве устойчивых решений $\mathcal{W} = \mathcal{W}_1 + \mathcal{W}_2$ (см. § 3) для любых $g_i(\xi', q)$.

b) Задача
$$A_0^2(0, \xi', -i \frac{d}{dx_n}, q) v_2(\xi', x_n, q) = 0, (x_n > 0)$$

$$R_{j}(0, \, \xi', \, -i \frac{d}{dx_{n}}, \, q) \, v_{2}(\xi', \, x_{n}, \, q) \big|_{x_{n}=-0} = \widetilde{\psi}_{j}(\xi', \, q)$$

$$(j = 1, \cdots, m)$$

имеет одно и только одно решение в пространстве устойчивых решений для любых $\widetilde{\phi}_i(\xi^i, q)$.

Теорема 2. Пусть выполнены условия I и 2. Тогда существует такое $q_0 > 0$, что при $|q| > q_0$ решение (4.1) - (4.4) существует при любых $f_1 \in W_2^{l-2m}(\Omega_1)$, $f_2 \in W_2^{l-2m}(\Omega_2)$, $g_j \in W_2^{l-m_j-\eta_s}(\Gamma_1)$ $\psi_j \in W_2^{l-r_j-\eta_s}(\Gamma)$ и имеет место оценка

$$\|u\|_{L} \leqslant C \|\|f_{1}\|_{L-2m} + \|f_{2}\|_{L-2m} + \sum_{j=1}^{2m} \|g_{j}\|_{L-m_{j}-\gamma_{z}} +$$

$$+ \sum_{j=1}^{2m} \|\psi_{j}\|_{L-r_{j}-\gamma_{z}} \leq C' \|u\|_{L}$$

$$(4.5)$$

(см. (1.18), (1.18')).

Теорема 3. Пусть $\Omega_2 = R^n/\overline{\Omega}_1$ и коэффициенты оператора $A^2(x, D_x, q)$ имеют конечный предел при $|x| \to \infty$, а именно, для любого коэффициента $\alpha(x)$ оператора A^2 выполнено

$$\lim_{|x| \to \alpha} \alpha(x) = \alpha \tag{4.6}$$

и пусть выполнены условия 1 и 2а). Тогда задача

$$A^{1}(x, D_{x}, q) u_{1}(x, q) = f_{1}(x, q), \quad x \in \Omega_{1}$$

$$A^{2}(x, D_{x}, q) u_{2}(x, q) = f_{2}(x, q), \quad x \in \Omega_{2} = R^{n}/\overline{\Omega}_{1}$$

$$B_{j}(x, D_{x}, q) u_{1}(x, q)|_{\Gamma_{1}} + C_{j}(x, D_{x}, q) u_{2}(x, q)|_{\Gamma_{1}} = g_{j}(x'', q)$$

$$(j = 1, \dots, 2m), \quad x'' \in \Gamma_{1}$$

имеет решение $u=u_1+u_2\in W_2^l(\mathbb{R}^n)$ для любых $f_1\in W_2^{l-2m}(\Omega_1)$ $f_1\in W_2^{l-2m}(\Omega_2)$, $g_j\in W_2^{l-m_j-1_2}(\Gamma_1)$ и имеет место априорная оценка

$$|||u||_{l} \leq C |||f_{1}||_{l-2m} + ||f_{2}||_{l-2m} + \sum_{j=1}^{2m} ||g_{j}||_{l-m_{j}-l_{z}}^{2}| \leq C' ||u||_{l}.$$
 (4.7)

Доказательство оценок (4.5) и (4.7) проводится с помощью известного метода локализации: берется конечное достаточно малое разбиение единицы области $\Omega_1+\Omega_2$ (в случае теоремы 3 всего R^n)

$$\sum \varphi_{j}(x) \equiv 1$$

такое, что коэффициенты граничных операторов и операторов A^1 и A^2 в окрестности носителя каждой из $\varphi_j(x)$ близки к постоянным. После этого оценки (4.5) и (4.7) доказываются для функций φ_j и и без труда

переносятся на функцию u(x). Отметим, что в случае теоремы 3 в силу (4.6) во всем R^n можно построить требуемое конечное разбиение единицы, ибо можно выбрать достаточно большой шар S с центром в начале координат, такой, что вне этого шара коэффициенты оператора A^2 как угодно близки к постоянным. Если $| \varphi_j |$, $j = 1, \cdots, N$ — конечное разбиение единицы шара S, то полагая

$$\varphi_{N+1}(x) = \begin{cases} 1, & x \in UV_j \\ 1 - \sum_{j=1}^{N} \varphi_j(x), & x \in UV_j, \end{cases}$$

где V_j — носитель φ_i , получим требуемое конечное разбиение единицы всего R^n .

Для доказательства существования решения строится "почти обратный" оператор (см. [3], [9]), который в локальных координатах выражается формулами вида (3.15), (3.16), если носитель φ_j не пересекает Γ (соответственно Γ_1), и вида (3.20), если носитель φ_j имеет общие точки с границей.

§ 5. Перейдем теперь к изучению задачи (2.1) - (2.5). Сначала рассмотрим случай однородных начальных условий: все $\varphi_k(x) = 0$.

Задачу (2.1) — (2.5) будем называть параболической, если задача (2.1') — (2.4'), где p заменено на q^{2m} , удовлетворяет условиям 1 и 2 § 4. Условие 1 есть условие параболичности каждого из операторов A^1 и A^2 , а условие 2 эквивалентно условию Т. Я. Загорского [6].

Наша цель — получение теорем существования и единственности параболической смешанной задачи (2.1) - (2.5) в пространствах $P_{I,\ I/2b}$ (e^{-1^I} , G). Для этого, воспользовавшись теоремами предыдущего параграфа, перенесем результаты теорем 2 и 3 на пространства $E_{I,\ I/2b}$ (γ , γ). Потом, используя изоморфизм пространств $P_{I,\ I/2b}$, $P_{\lambda,\ \lambda/2b}$ и $E_{I,\ I/2b}$, $E_{\lambda,\ \lambda/2b}$ (см. § 1), получим теорему о разрешимости параболической смешанной задачи в пространствах $P_{I,\ I/2b}$ ($e^{-\gamma I}$, G).

Теорема 4. Пусть задача (2.1')-(2.4'), где P заменено на q^{2b} удовлетворяет условиям I и $2 \$ 4. Пусть $l \gg \max{(2m, m_j + 1, r_j + 1)}$. Тогда существует такое $\gamma > 0$, что решение задачи (2.1)-(2.4) существует при любых

$$F_{1}(x, p) \in E_{t-2m, \frac{t-2m}{2b}}(\gamma, \Omega_{1}), F_{2}(x, p) \in E_{t-2m, \frac{t-2m}{2b}}(\gamma, \Omega_{2})$$

$$G_{j}(x'', p) \in E_{t-m_{j}-1/2}(\gamma, \Gamma_{1}), \Psi_{j}(x', p) \in E_{t-r_{j}-1/2}(\gamma, \Gamma)$$

и имеет место оценка

$$\begin{split} \|U\|_{l_{i},\ l/2b} &= \|U_{1}\|_{l_{i},\ l/2b} + \|U\|_{l_{i},\ l/2b} \leqslant C \left\{ \|F_{1}\|_{l-2m,\frac{l-2m}{2b}} + \|F_{2}\|_{l-2m,\frac{l-2m}{2b}} + \right. \\ &+ \sum_{j=1}^{2m} \|G_{j}\|_{p_{i},\mu/2b}^{r} + \sum_{j=1}^{m} \|\Psi_{j}\|_{l_{i},\mu/2b}^{r} \right\} \leqslant C' \|U\|_{l_{i},\ l/2b}. \\ & (l-m_{j}-1)_{2} = \mu_{s}, \quad l-r_{i}-1/_{2} = \gamma). \end{split}$$

Функция U(x, p) удовлетворяет (2.1') — (2.4') при всех p, $\text{Re } p > \gamma$ и почти всех p с $\text{Re } p = \gamma$.

Аналогичную теорему можно сформулировать и в случае, когда $Q_4 = R^n/\Omega_{\star}$.

Пусть теперь $u\left(x,\,t\right)\in P_{l,\,l/2b}\left(e^{-\gamma t},\,G\right)$ и γ произвольно. Легко-проверить, что если $u\left(x,\,t\right)$ удовлетворяет (2.1)-(2.4), то

$$f_1(x, t) \in P_{l-2m, \frac{l-2m}{2b}}(e^{-\eta t}, G_1), f_2(x, t) \in P_{l-2m, \frac{l-2m}{2b}}(e^{-\eta t}, G_2),$$

$$g_j(x'', t) \in P_{u, u, 2b}(e^{-\eta t}, G_1'), \psi_j(x', t) \in P_{u, u, 2b}(e^{-\eta t}, G_1').$$

После преобразования Лапласа по t получаем задачу (2.1')-(2.4'), где в правых частях $F_1(x,p)\in E_{l-2m,\frac{l-2m}{2h}}(\gamma,\Omega_1), F_2(x,p)\in$

$$\in E_{p-2m, \frac{l-2m}{2b}}(\gamma, \Omega_{2}), \ G_{j}(x'', p) \in E_{p, \mu/2b}(\gamma, \Gamma_{1}), \ \Psi_{j}(x', p) \in E_{\nu, \nu/2b}(\gamma, \Gamma).$$

Так как задача (2.1) — (2.5) — параболическая, то из теоремы 4, используя изоморфизм пространств $P_{l,-l/2b}$, $P_{\lambda,-\lambda/2b}$ и $E_{l,-l/2b}$, $E_{\lambda,-\lambda/2b}$, получаем следующую теорему.

Теорема 5. Пусть (2.1)-(2.5) — параболическая задача и и пусть $l > \max{(2m, m_j + 1, r_j + 1)}$. Тогда существует такое $\gamma > 0$, что задача (2.1)-(2.5) имеет одно и только одно решение $u(x, t) \in P_{l, 1/2b}(e^{-\gamma t}, G)$ при любых правых частях $f_1(x, t) \in P_{l-2m, \frac{l-2m}{2b}}(e^{-\gamma t}, G_1)$, $f_2(x, t) \in P_{l-2m, \frac{l-2m}{2b}}(e^{-\gamma t}, G_2)$, $g_j(x'', t) \in P_{p, p/2b}(e^{-\gamma t}, G_1)$, $\psi_j(x', t) \in P_{p, p/2b}(e^{-\gamma t}, G_1)$,

при этом справедлива оценка

$$\begin{split} \|e^{-\gamma t}u\|_{l, \ l/2b} & \leqslant C \left[\|e^{-\gamma t}f_1\|_{l-2m, \frac{t-2m}{2b}} + \|e^{-\gamma t}f_2\|_{l-2m, \frac{t-2m}{2b}} + \\ & + \sum_{j=1}^{2m} \|e^{-\gamma t}g_j\|_{l, \mu, 2b}^r + \sum_{j=1}^m \|e^{-\gamma t}\psi_j\|_{l, \nu/2b}^r \right] \leqslant C' \|e^{-\gamma t}u\|_{l, \ l/2b}, \end{split}$$

В случае неоднородных начальных условий сформулируем условия согласованности правых частей $f_1, f_2, g_j, \psi_i, \varphi_k$: в области $\Omega \times (0, +\infty)$ существует такая функция $u_0(x, t)$, что

$$e^{-\gamma t}u_{\sigma}(x, t) \in W_{x, t, 2}^{t, 1/2b}(\Omega \times (0, +\infty)),$$

$$\frac{\partial^k u_0}{\partial t^k}\bigg|_{t=0} = \varphi_k(x), \quad (k=0, \cdots, z-1)$$

и если $A^1u_0=f_1^0$ в $\Omega_1,\quad A^2u_0=f_2^0$ в Ω_2 и

$$B_{j} u_{0}|_{S_{\Gamma_{i}}} + C_{j} u_{0}|_{S_{\Gamma_{i}}} = g_{j}^{0}; R_{j} u_{0}|_{S_{\Gamma}} = \psi_{j}^{0},$$

то после продолжения функций $f_1-f_1^0,\,f_2-f_2^0,\,\,g_j-g_j^0,\,\psi_j-\psi_j^0$ нулем при t < 0 имеет место

$$\begin{split} &e^{-\gamma t}\left[f_{1}-f_{1}^{0}\right]\in W_{x,\,t,\,2}^{t-2m}\overset{t-2m}{\underset{2b}{\longrightarrow}}(\Omega_{1}\times(0,\,+\infty)),\\ &e^{-\gamma t}\left[f_{2}-f_{2}^{0}\right]\in W_{x,\,t,\,2}^{t-2m}\overset{t-2m}{\underset{2b}{\longrightarrow}}(\Omega_{2}\times(0,\,+\infty)),\\ &e^{-\gamma t}\left[g_{j}-g_{j}^{0}\right]\in W_{x^{*},\,t,\,2}^{p,\,y/2b}\left(\Gamma_{1}\times(0,\,+\infty)\right),\\ &e^{-\gamma t}[\phi_{j}-\psi_{j}^{0}]\in W_{x^{*},\,t,\,2}^{p,\,y/2b}\left(\Gamma\times(0,\,+\infty)\right). \end{split}$$

Теорема 6. Пусть (2.1)-(2.5)- параболическая задача, 1/2b- целое, 1> тах $(2m, m_j+1, r_j+1)-$ целое. Тогда существует такое $\gamma>0$, что при любых f_1 , f_2 g_j , ψ_j , φ_k , удовлетворяющих условию согласованности, существует одно и только одно решение задачи (2.1)-(2.5), причем e^{-1} и $(x, t)\in W_{x,t,2}^{1,1/2b}$ (G) и имеет место оценка

$$\begin{split} \|\,e^{-\gamma t}\,u\,\|_{l,\ t/2b} & \leqslant C\,\|\,e^{-\gamma t}\,f_1\|_{l-2m,\ \frac{l-2m}{2b}} + \|\,e^{-\gamma t}\,f_2\|_{l-2m,\ \frac{l-2m}{2b}} + \\ & + \sum_{j=1}^{2m} \|\,e^{-\gamma t}\,g_j\,\|_{p,\ p/2b}^* + \sum_{j=1}^m \|\,e^{-\gamma t}\,\psi_j\,\|_{r,\ s/2b}^* + \sum_{k=0}^{s-1} \|\phi_k\|_{l-2b\,k-b}\| \leqslant \\ & \leqslant C'\,\|\,e^{-\gamma t}\,u\,\|_{l,\ l/2b}. \end{split}$$

Аналогичную теорему существования и единственности параболической задачи в соответствующих пространствах можно сформулировать и для области Ω^T , T— конечное.

. В заключение выражаю благодарность проф. М. И. Вишику за постановку задачи и ценные указания.

Московский энергетический институт

Поступила 24 IV 1964

Ա. Գ. ԳՅՈՒԼՄԻՍԱՐՅԱՆ

ԸՆԴՀԱՆՈՒՐ ԵԶՐԱՅԻՆ ԽՆԴԻՐՆԵՐ ԽԶՎՈՂ ԳՈՐԾԱԿԵՑՆԵՐՈՎ ՊԱՐԱԲՈԼԵԿ ՀԱՎԱՍԱՐՈՒՄՆԵՐԻ ՀԱՄԱՐ

Գլանային տիրույթում գիտվում է ըստ Պետրովսկու գծային 26 — պարարոլիկ 2m կարդի խղվող դործակիցներով հավասարումը։ Ալն մակերևուլ Թնևրի վրա, որտեղ խղվում են հավասարման գործակիցները և գլանի կոզմնային մակերևուլ թե վրա արվում են եզրային պայմանները։ Ժամանակի սկզբնական մոմենաին տրվում են Կոշու պայմանները։

Ենքեարկելով խնդիրը «պարարոլիկուքվան» պայմանին և պահանջելով համաձայնեցվածություն հավասարման ու եղրային պայմանների աջ մասերի և Կոշու ավյալների միջև, ապացուցվում է խնդրի լուծման դոլությունը և միակությունը համապատասխան տարածություններում։

ЛИТЕРАТУРА

- Соболев С. Л. Некоторые применения функционального анализа и математической физике. Изд. ЛГУ, Л., 1950.
- Слободецкий Л. Н. Обобщенные пространства С. Л. Соболева и их применение к краевым задачам для дифференциальных уравнений в частных производных. ЛГПИ им. А. И. Герцена. Уч. зап. физ.-мат. фак., 197, 1958, 54—112.
- Агранович М. С., Вишик М. И. Краевые задачи для параболических уравнений. У.МН, 19, вып. 4, 1964, 53—161.
- Петровский И. Г. О проблеме Коши для системы линейных уравнений с частимми производными в области неаналитических функций. Бюля. МГУ, секция А І. вып. 7, 1938, 1—72.
- Агранович М. С., Вишик М. И. Параболические граничные задачи. УМН, 18 вып. 1, 1963, 206—207.
- Загорский Т. Я. Смешанные задачи для систем дифференциальных уравнений параболического типа. Львов, 1961.
- Эйдельман С. Д. О краевых задачах для парабоянческих систем в полупространстве. ДАН, 142. № 4, 1962, 812—814.
- Слободецкий Л. Н Оценки решений эллиптических и параболических систем ЛАН, 120, № 3, 1958, 468—471.
- Агранович М. С., Вишик М. И. Эллиптические граничные задачи, зависящие от параметра, ДАН, 149. № 2, 1963, 223—226.
- Раймберз Я. А., Ші-фтель З. Г. Общие граничные задачи для эллиптических уравнений с разрывными коэффициентами. ДАН, 148, № 5, 1963, 1034—1037.
- Шефтель З. Г. Разрешниость в L_p и классическая разрешниость общих граничных задач для эллиптических уравнений с разрывными коэффициентами. УМН, 19, вып. 4, 1964, 230—232.