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We derive an expression for the force acting on a small (still macroscopic) particle in the field of the 
quantized electromagnetic radiation in any arbitrary quantum state. This result unifies in one simple 
formula all known expressions for the forces (i.e. van der Waals or frictional) acting on a small particle. 
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1. Introduction 
     
    Growing successes in nanotechnologies and possibility of non-contact control of 
nanoparticles by optical tweezers [1,2] or by usage of effects of quantum friction [3] 
stimulate investigations of the force acting on a polarizable nanoparticle in the external 
electromagnetic field for the states of the field out of equilibrium. Inclusion in 
consideration of nonequilibrium states is stipulated by the possibility of tuning the 
interaction in both strength and sign [4,5]. 
     The problem of the mechanical force acting on a small neutral particle or on an atom 
with the electromagnetic field in equilibrium is well understood [6]. Meanwhile the same 
problem for the nonequilibrium states of the field is solved only in a special case when 
usage of the fluctuation-dissipation theorem provides an opportunity in "construction" of 
a "hot" half-space [4,5]. 
     In this paper we derive an expression for the force acting on a small (still 
macroscopic) particle (which we will call nanoparticle) in the field of the quantized 
electromagnetic radiation in any arbitrary quantum state. This result provides an 
opportunity to unify in one expression for the force the all known results related to the 
problem. As the simplest consequence of the generalization we recover expressions for 
particle-wall interaction force and expression for the frictional force acting on a moving 
particle in the field of blackbody radiation. 
 
2. Expression for the force 
 
    Compared with the case of atom-field interaction problem the case of macroscopic 
nanoparticle permits a very important approximation, i.e., in this case for moderate 
intensities we can ignore dynamics of the particle under influence of the external 
electromagnetic field and suppose that the particle stays in its initial state (local 
thermodynamic equilibrium) during all the time of interaction with the external field. 
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Besides, in case of nanoparticles the characteristic size of the particle is much smaller 
than the wavelength of radiation (for thermal fields relevant wavelengths are of the order  

Tc /2π ), so we can solve the problem in the Rayleigh regime [7], i.e., we may ignore the 
change of external field in the volume of the particle and suppose that the particle 
behaves as a single electric dipole. 
     In electric-dipole approximation the force of radiation on a neutral particle located at 
the point Ar  is given by [8] 

     ( ) ( ) ( ) .,rˆˆ,rA
Arr

tEtdtF
=

∇=                               (1) 

Taking interaction V̂ of the electromagnetic field with a dipole in the form ( )ArEdV ˆˆˆ −= , 

we can evaluate ( ) ( )tEtd ,rˆˆ  in formula (1) using the Keldysh technique [9]: 
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Then, in the first order of interaction  V̂  we find 
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( )τλσ ,;,ˆ
ArtrD  is the photon propagator 

( ) ( ) ( )σλλσ ττ ,ˆ,ˆˆ,;,ˆ
AjiCAij rAtrATirtrD −=  

 in the Dzyaloshinskii gauge ( 0=ϕ ) and   

( ) ( ) ( )σλλσ ττα jiCij dtdTit ˆˆˆ, =  

is the particle propagator in the interaction picture. 
    After the Keldysh transformation [9,10] 
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2
1 =+ −+−+= σλλσ , 

in (2) we come to the expression 
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which for stationary states of  the electromagnetic field, i.e., when 
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is reduced to a time-independent quantity and then for the force (1) we find 
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    Further on we will suppose that the particle stays in a local thermodynamic equilibrium 
at temperature T  during the interaction with electromagnetic field, therefore the Keldysh 
function of the particle is given by 
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     Expression (3) (with (4)) for the force acting on a small particle in the external 
electromagnetic field in any arbitrary quantum state is the main result of this paper. This 
expression also contains all the previous results related to the problem.   
 
3. Casimir--Polder interaction with the wall 
 
    As known, in the case of the global equilibrium 
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Expressions (3)-(4) result in the force acting on the particle in equilibrium [11]: 
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   Using analytical properties of the retarded functions RR D̂,α̂  in the integrand, we can 
simplify expression (6) representing it as a sum over imaginary frequencies. In fact, 
replacing the integration over real frequencies ω by the integration in the complex upper 
half-plane and then using the residue theorem, we come to the Matsubara representation 
of the force in equilibrium [12]:   
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    As a simple application of this expression let us consider the interaction force of the 
particle with a dielectric half-space 0<z . Inserting the expression for the temperature  
Green’s function ( )As rriD ,;ˆ ζ  [13], we find for the unique nonzero z-component of the 
force (7) 
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where ( ) 2222
0 , ⊥⊥ +=+= kkiwkkw sss ζε and ⊥⊥= kkn / . For the isotropic particle 

αδα ijij =  and expressions (8), (9) coincide with the well-known result [14] 
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4. Frictional force in free space 
 
    As an application of our result (3) to the case of frictional forces let us consider the 
simplest problem: frictional force acting on the moving particle in the field of blackbody 
radiation [15]. In the case of free electromagnetic field the retarded (advanced) function 
depends on the difference of coordinates [16] and  
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In the reference system of the particle moving uniformly with a velocity v  (relative to the 
blackbody radiation) the photon distribution function depends also on the photon 
momentum k  and is given by 
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and for the Keldysh function we can use the expression 
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In this case we get for the force (3): 
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For isotropic polarization αδα ijij =  
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and for the force acting on the particle (in the frame of particle) we find [17,18] 
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    To conclude, we derive an expression for the interaction force of a small particle with 
the quantized electromagnetic field in nonequilibrium regime. This result could be used 
in the problems of noncontact control and alignment of nanoparticles in the thermal fields 
out of equilibrium. Besides, the result provides an opportunity to unify in one expression 
for the force  all known results related to the problem, i.e. the Van der Waals interactions 
of the particle with surroundings and frictional forces acting on the moving particle. 
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