КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

УДК 636.082-11

М. М. МИРГИЯНЦ

НАСЛЕДОВАНИЕ ВОЛОСЯНОГО ПОКРОВА ПРИ МЕЖПОРОДНОМ СКРЕЩИВАНИИ КРОЛИКОВ*

Проблема улучшения существующих пород сельскохозяйственных животных и выведения новых имеет важное народно-хозяйственное значение. Среди круга вопросов, касающихся совершенствования животных, важное значение имеет вскрытие закономерностей наследования тех или иных хозяйственно-полезных признаков.

В настоящее время законы наследования широко используются в пушном звероводстве, кролиководстве, каракулеводстве для получения высококачественных мехов более красивых и ценных расцветок.

В связи с высокой рентабельностью кролиководства и широкими перспективами его развития в нашей стране в последние годы этой отрасли уделяется большое внимание. Кролиководство имеет определенное значение не только в производстве меха, но также и мяса.

О наследовании длины и тонины волосяного покрова кроликов в литературе имеется очень мало сведений, особенно касающихся скрещивания длинношерстных и короткошерстных пород. К тому же генетический механизм наследования этих признаков далеко не полностью выявлен.

Для решения эгого вопроса были проведены опыты по скрещиванию кроликов пород белый ангорский и мардер-рекс в учебно-опытном хозяйстве Ереванского зоотехническо-ветеринарного института.

С целью изучения наследования длины и тонины волосяного покрова у родительских форм, у F_1 (белый ангорский \times мардер-рекс) и у потомства F_2 образцы шерсти брались на крестце и бочке (за лопаткой) по общепринятой методике.

По литературным данным [3] известно, что у кроликов как длинношерстность (свойственная ангорской породе), так и короткошерстность (свойственная породе рекс) ведут себя в F_1 как рецессивные признаки по отношению к шерсти нормальной длины. Однако работ, касающихся наследования длины шерсти в рассмотренном сочетании в F_2 , в доступной нам литературе мы не встречали.

^{*} Текст доклада, прочитанного на конференции по генетике и генетическим основам селекции, посвященной 50-летию образования СССР, Ереван, ноябрь, 1972 г.

Аналогичная работа, проведенная Виллем и Швабакером [1], посвящена скрещиванию кроликов с шерстью нормальной длины с короткошерстными кроликами рекс. Ими установлено, что в F_1 доминирует нормальная длина шерсти, а в F_2 происходит расщепление: на каждые три кролика с шерстью нормальной длины приходится один коротко шерстный кролик рекс. Признак рекса наследуется совершенно независимо от признака окраски, и во втором поколении имеет место соотношение 3:1. Если же скрещивают рекса определенной окраски с кроликом другой окраски, но с шерстью нормальной длины, то происходит расщепление 9:3:3:1. Кролики-рексы, полученные во втором поколении, независимо от окраски обладают всеми присущими чистой породе наследственными признаками. Их надо рассматривать как гомозиготов по данным генам.

Как известно, у кроликов остевой волос имеет большую длину, чем пуховый. Исключение составляют кролики породы рекс, у которых пуховый волос несколько длиниее остевого.

Использованные нами в опыте родительские формы характеризовались следующими показателями длины и тонины фракций волосяного покрова: наименьшую длину волоса имели кролики породы мардеррекс, у которых длина ости на крестце составляла $18,1\pm0,82$, а пуха— $23,4\pm0,71$ мм; на бочке—соответственно $18,01\pm0,38$ и $23,1\pm1,40$ мм. Наибольшой длиной волоса обладали кролики породы белый ангорский: на крестце длина ости составляла $61,5\pm2,80$, а пуха— $40,8\pm2,0$ мм; на бочке—соответственно $70,0\pm4,08$ и $45,5\pm2,6$ мм. Наименьшую тонину пуховых волос имели кролики белой ангорской породы: на крестце— $11,9\pm0,26$, а на бочке— $12,1\pm0,33$ и. Тонина ости на крестце у белой ангорской породы составляла $56,16\pm1,21$, а на бочке— $58,32\pm1,73$ и. У породы мардер-рекс тонина пуха на крестце составляла $14,22\pm0,25$, ости— $64,96\pm3,16$ и, а на бочке—соответственно $15,02\pm0,31$ и $60,93\pm1,75$ и.

Изучение волосяного покрова у помесей F_1 показало, что наследование длины носит промежуточный характер и соответствует нормальной длине волоса породы советский мардер. Длина волоса у помесей на крестце составила по ости 29.4 ± 1.18 , пуха— 25.6 ± 3.70 мм, а на бочке—соответственно 34.4 ± 0.45 и 25.0 ± 0.59 мм. Для сравнения мы взяли породу советский мардер с волосяным покровом нормальной длины, у которой длина ости на крестце составляет 29.5 ± 1.57 , а пуха 20.4 ± 0.91 мм; на бочке—соответственно 31.0 ± 1.08 и 22.1 ± 0.50 мм.

По тонине волоса у помесей F_1 также наблюдается в основном промежуточное наследование. Тонина пуха на крестце равна $12,32\pm0,36$, а на бочке— $13,16\pm0,23\,\mu$. У помесей F_1 тонина ости несколько больше, чем у исходных пород и составляет на крестце $68,09\pm2,1$, а на бочке— $68,11\pm3,03\,\mu$. По эгому признаку помеси F_1 приближаются к породе советский мардер, у которой тонина ости на крестце составляет $72,48\pm2,73$, а на бочке— $68,09\pm1,32\,\mu$.

Во втором поколении кроликов, полученных от скрещивания помесей F_1 (белый ангорский×мардер-рекс), наблюдалось расщепление Биологический журнал Армении, XXVI, № 8—6

как по длине, так и тонине волосяного покрова: у гетерозиготных по этим признакам кроликов F_2 (белый ангорский \times мардер-рекс) длина ости на крестце составила $31,80\pm0,56$, а пуха— $22,5\pm1,1$ мм, а на бочке соответственно— $34,4\pm0,28$ и $24,2\pm0,51$ мм; тонина ости на крестце— $68,08\pm0,36$, пуха— $12,43\pm0,21$ и, а на бочке соответственно— $68,27\pm2,04$ и $12,94\pm0,23$ и. У гомозиготных по этим признакам кроликов F_2 (ангорские) длина ости на крестце составила $66,6\pm2,31$, пуха— $40,5\pm2,34$ мм, а на бочке—соответственно $61,6\pm1,06$ и $40,8\pm1,68$ мм: тонина ости на крестце— $55,78\pm0,95$, пуха— $11,79\pm0,46$ и, на бочке—соответственно $58,19\pm0,16$ и $12,35\pm0,33$ и. У гомозиготных по этим признакам кроликов F_2 (рексы) длина ости на крестце составила $20,0\pm0,70$, пуха— $23,8\pm0,65$ мм, на бочке—соответственно $20,0\pm0,71$ и $24,2\pm0,41$ мм; тонина ости на крестце— $64,64\pm0,71$, пуха— $14,18\pm0,03$ и, а на бочке—соответственно $60,48\pm1,31$ и $15,08\pm0,07$ и.

Таким образом, наши опыты показали, что при скрещивании длинношерстных ангорских кроликов с короткошерстными рексами получаются помеси F_1 с шерстью нормальной длины. Как длинношерстность (свойственная ангорской породе), так и короткошерстность (свойственная породе рекс) ведут себя как рецессивные признаки по отношению к шерсти нормальной длины. Во втором поколении происходит расщепление как по длине, так и тонине волосяного покрова. Кролики второго поколения по показателям длины и тонины волосяного покрова приближаются к родительским формам. Наследование длины и тонины волосяного покрова происходит по типу комплементарного взаимодействия генов.

Ереванский зооветеринарный институт

Поступило 20.11 1973 г.

Մ. Մ. ՄԻՐՂԻՅԱՆՑ

ՄԱԶԱՅԻՆ ԾԱԾԿՈՒՅԹԻ ԺԱՌԱՆԿՈՒՄԸ ՃԱԳԱՐՆԵՐԻ ՄԻՋՑԵՂԱՅԻՆ ՏՐԱՄԱԽԱՉՄԱՆ ԺԱՄԱՆԱԿ

Udhahaid

Երկարամաղ Անդորական ցեղի ճազարները կարճամաղ Ոեկսերի հետ տրամախաչելիս ստացվում են առաջին սերունդի խառնածիններ, որոնք ուշնեն, նորմալ երկարության մազեր։ Ինչպես երկարամազությունը (որը բնուրոշ է անդորական ցեղին), այնպես էլ կարճամաղությունը, (որը բնորոշ է քեկսերին) նորմալ երկարության մաղերի նկատմամբ հանդես են դալիս որակա ռեցեսիվ հատկություններ։ Երկրորդ սերնդում տեղի է ունենում ձեղարում ինչպես ըստ երկարության, այնպես էլ մազածածկի բարակության։ Երկրորդ սերնդի հաղարները մազածածկի երկարության և բարակության ցուցանիրով մոտենում են ծնողական ձևերին։ Մաղածածկի երկարությունը և

րարակությունը ժառանդվում է գեների կոմպլիմենտար փոխազդեցության տիպով։

ЛИТЕРАТУРА

- 1. Вилль А. и Швабакер И. Кролик-рекс. К проблеме короткошерстного кролика на основании экспериментальных данных. Сельколхозгиз, 1931.
- 2. Кушнер Х. Ф. Наследственность сельскохозяйственных животных, М., 1964.
- 3. Натали В. Генетика, 1936.