ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић рриђшиши ћшипћи 59, №2, 2006 Химический журнал Армении

УДК 547.867+547.435+547.263

СИНТЕЗ НОВЫХ ПРОИЗВОДНЫХ МОРФОЛИНСОДЕРЖАЩИХ ПРОПАН-2-ОЛОВ

Э. Г. МЕСРОПЯН, А. А. АВЕТИСЯН, А. С. ГАЛСТЯН, И. Р. АРУТЮНОВА и Г. А. ШАХНАЗАРЯН

Ереванский государственный университет

Поступило 30 V 2005

Исходя из N-глицидилморфолина получен ряд новых производных морфолинсодержащих пропан-2-олов, а также O-производные синтезированных вицинальных аминоспиртов.

Табл.2, библ. ссылок 15.

Взаимодействием N-глицидилморфолина(I) с аммиаком(II), морфолином(III), пиперидином(IV), диэтаноламином(V), бензимидазолом(VI) и 5,5-диметилгидантоином(VII) синтезированы соответствующие 1(3)-замещенные-3(1)-морфолин-4-илпропан-2-олы (VIII-XIII). Системы, имеющие указанные гетероциклические фрагменты и содержащие известные активные фармакофорные фрагменты [1], интересны как потенциально биологически активные соединения.

Для получения вицинальных аминоспиртов, которые используются в качестве строительных блоков при конструировании молекул природных и биологически активных органических соединений, удобным методом является взаимодействие эпоксидов с аминами [2-8].

Различные вицинальные аминоспирты входят в число действующих лекарств, а их О-производные также проявляют биологическую активность [1, 9, 10].

$$-NRR' = -NH_2(II, VIII); -N O (III, IX); -N O (IV, X);$$

$$-N OH (V, XI); -N O CH_3 CH_3 CH_3 (VII, XIII).$$

Раскрытие цикла, как и ожидалось [11-15], протекает исключительно по правилу Красуского с образованием одного продукта реакции.

Нами изучено взаимодействие натриевого производного соединения X с аллилбромидом(XIV) и метиловым эфиром монохлоруксусной кислоты(XV), приведшее к 1-N-морфолино-3-N-пиперидино-2-аллилокси- и - (метоксикарбонилметилокси)пропанам.

$$X \xrightarrow{+ Na, \ KCUЛОЛ}$$
 ONa
$$\xrightarrow{+ R"Hal \ (XIV, XV)}$$
 -NaHal
$$\xrightarrow{- H_2} ONa \xrightarrow{- NaHal}$$

$$\overrightarrow{- NaHal}$$

$$R" = - CH_2 - CH = CH_2 (XIV, XVI); - CH_2 - C (XV, XVII);$$
 OMe
$$Hal = Br(XIV); Cl(XV)$$

Выходы и физико-химические характеристики полученных соединений приведены в табл. 1, а данные ИК и ЯМР 1 Н спектров – в табл. 2.

Экспериментальная часть

Спектры ЯМР 1 Н получены на спектрометре "Mercury-300" (фирмы "Varian") с рабочей частотой 300 $M\Gamma u$, растворитель – ДМСО- d_6 ; T=30°С. ИК спектры сняты на спектрофотометре "Specord 75IR". Индивидуальность и чистота полученных соединений контролировалась методом ТСХ на пластинках "Silufol UV-254", проявление – парами йода.

 $\label{eq:Tadinu} {\it Tadinu} 1$ Выходы и физико-химические характеристики соединений VIII-XIII, XVI, XVII

Соединение	Выход, %	Т.кип., °С/мм рт ст (по ²⁰)	Т. пл., ∘С	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Элюент						
					С	Н	N	Rf	гексан	CHCl3	ацетон	этанол	ДМФА	метанол
VIII	81	127/3 (1,4946)	ı	C ₇ H ₁₆ N ₂ O ₂	52,69 52,50	10,24 10,00	17,71 17,50	0,37	_	-	0,4	-	1	1
IX	78,9	180- 182/10 (1,4949)		$C_{11}H_{22}N_2O_3$	57,61 57,39	9,69 9,57	12,36 12,17	0,46	_	-	0,8	-	1	2,0
X	83,2	127/0,5 (1,4924)	_	$C_{12}H_{24}N_2O_2$	63,04 63,16	10,29 10,53	12,03 12,28	0,47	_	_	0,2	_	0,2	2,0
XI	76,5	207/0,2 (1,5300)	_	C ₁₁ H ₂₂ N ₂ O ₄	53,91 53,66	8,68 8,94	11,49 11,38	0,53	_	_	0,8	_	0,4	2,2
XII	83,4	_	172- 173	$C_{14}H_{19}N_3O_2$	<u>64,01</u> 64,37	7,54 7,28	16,35 16,09	0,47	_	0,8	-	1,2	-	_
XIII	87,3	_	115- 116	$C_{12}H_{21}N_3O_4$	52,91 53,14	7,61 7,75	15,24 15,50	0,49	_	1,0	_	0,8	_	_
XVI	65,0	132/0,2 (1,4896)	_	C ₁₅ H ₂₈ N ₂ O ₂	67,34 67,16	10,53 10,45	10,15 10,45	0,47	_	0,6	_	_	0,4	1,0
XVII	68,0	139/2 (1,4944)	_	C ₁₅ H ₂₈ N ₂ O ₄	60,25 60,00	9,17 9,33	9,41 9,33	0,51	_	0,4	_	_	0,6	1,0

 ${\it Tаблица~2}$ Спектры ИК и ЯМР $^{\rm l}{\rm H}$ соединений VIII-XIII, XVI, XVII

Соеди-нение	Спектр ИК, v, <i>см</i> ¹	Спектр ЯМР ¹ Н, δ, м.д.						
	3480(OH); 3370-3130,	3,58т(4H, CH ₂ O); 3,52м(1H, <u>CH</u> OH); 2,18-						
VIII	1600(NH ₂);	2,68м(8H, CH ₂ N);						
	1250, 1115, 1020(C-O)	2,14ш.c.(3H, NH ₂ , OH)						
IX	3440(OH); 1250, 1110,	3,73м(1H, CH); 3,59т(8H, CH ₂ O); 3,48ш.с.(1H,						
IA	1020(C-O)	OH); 2,20-2,48м(12H, CH ₂ N)						
	3430(OH); 1270, 1110,	3,72м(1H, CH); 3,58т(4H, CH ₂ O); 3,59ш.с.(1H,						
X	1005(C-O)	ОН); 2,15-2,48м(12H, СН2N); 1,55м(4H, СН2,						
	1005(C-O)	пиперидин); 1,43м(2Н, СН2, пиперидин)						
XI	3510-3160(OH); 1250,	3,74м(1Н, СН); 3,6м(8Н, ОСН ₂); 3,38-						
Al	1115, 1020(C-O)	3,52ш.с.(3Н, ОН), 2,22-2,5м(12Н, NСН2)						
		8,05с(1Н, СН, бензимидазола); 7,3-7,6м(4Н,						
XII	3170(OH); 1615(C=C);	Ar); 4,3дд(2H, <u>CH</u> ₂ -бензимидазол); 3,8м(1H,						
All	1265, 1115, 1010(C-O)	<u>СН</u> ОН); 3,62т(4H, CH ₂ O); 3,5ш.с.(1H, OH);						
		2,44 _M (6H, CH ₂ N)						
	3340(OH); 1750, 1710,	8,08с(1H, NH); 4,1м(1H, CH); 3,9дд(2H, СН2-						
XIII	1700(C=O);1270, 1115,	гидантоин); 3,58т(4H,CH2O); 3,5ш.с.(1H, OH);						
	1010(C-O)	2,46-2,24м(6H, CH ₂ N); 1,35с(6H, CH ₃)						
		5,86м(1H, <u>CH</u> =CH ₂); 5,2м(2H, CH= <u>CH</u> ₂);						
	3070, 1630(C=C); 1270,	3,92дт(2H, <u>CH</u> ₂ -CH=CH ₂); 3,72м(1H, <u>CH</u> O);						
XVI	1105, 1000(C-O)	3,58т(4H, OCH ₂); 2,15-2,48м(12H, NCH ₂);						
	1103, 1000(G-O)	1,55м(4Н, СН2, пиперидина); 1,43м(2Н, СН2,						
		пиперидина)						
		6,4c(3H, CH ₃); 4,53c(2H, CH ₂ COOMe);						
XVII	1730(C=O); 1270, 1110,	3,72м(1H, CH); 3,57т(4H, OCH ₂); 2,15-						
AVII	1005(C-O)	2,48м(12H, NCH ₂); 1,55м(4H, CH ₂ ,						
		пиперидина); 1,43м(2Н, СН2, пиперидина)						

- **1-Амино-3-N-морфолинопропан-2-ол(VIII).** К 74 *мл* (0,8 *моля*) охлажденного 20% водного аммиака по каплям добавляют 5,74 r (0,04 *моля*) N-глицидилморфолина (I). Реакционную смесь охлаждают еще 3 q, удаляют воду и аммиак, остаток подвергают перегонке в вакууме.
- **1,3-Ди-N-морфолинопропан-2-ол(IX).** Смесь 6,2 r (0,071 моля) морфолина и 3,4 r (0,024 моля) эпоксида I в 2 мл этанола оставляют при комнатной температуре на 72 ч. Избыток морфолина и этанола удаляют, остаток подвергают вакуумной перегонке.
- 1-N-Морфолино-3-N-пиперидинопропан-2-ол (X) и 1-[бис-(2-оксиэтил)-амино]-3-N-морфолинопропан-2-ол (XI) синтезированы аналогично IX.
- **1-N-Бензимидазоло-3-N-морфолинопропан-2-ол(XII).** Смесь 2,36 r (0,02 моля) бензимидазола, 2,86 r (0,02 моля) эпоксида I и 2 мл этанола нагревают 2 ч при 80-84°C. Смесь охлаждают, добавляют эфир, выпавшие белые кристаллы перекристаллизовывают из воды.
- **1-N-(5,5-диметилгидантоино)-3-N-морфолинопропан-2-ол (XIII).** Смесь 2,56 r (0,02 моля) 5,5-диметилгидантоина, 2,86 r (0,02 моля) эпоксида I и 2 мл этанола нагревают 30 мин при 170°С и оставляют при комнатной температуре на 12 ч. Экстрагированием горячим петролейным эфиром извлекают кристаллы XIII и перекристаллизовывают из петролейного эфира.
- **1-N-Морфолино-3-N-пиперидино-2-аллилоксипропан (XVI).** Смесь 20 $M\pi$ ксилола и 0,46 r (0,02 $M\pi$ 0,00 металлического натрия при перемешивании нагревают до 110°С, затем охлаждают до комнатной температуры и по каплям добавляют 4,56 r (0,02 $M\pi$ 0,00 соединения IX в 10 $M\pi$ 0 ксилола. Смесь нагревают 3 π 1 при 90-95°С, затем при комнатной температуре добавляют 2,42 π 1 (0,02 $M\pi$ 0,00 аллилобромида и нагревают 1 π 1 при 85-90°С. После удаления осадка и ксилола остаток перегоняют в вакууме.
- 1-N-Морфолино-3-N-пиперидино-2-(метоксикарбонилметилокси)-пропан (XVII) синтезирован аналогично соединению XVI.

ՄՈՐՖՈԼԻՆ ՊԱՐՈՒՆԱԿՈՂ ՊՐՈՊԱՆ-2-ՈԼԵՐԻ ՆՈՐ ԱԾԱՆՑՅԱԼՆԵՐԻ ՍԻՆԹԵՉ

Է. Գ. ՄԵՍՐՈՊՅԱՆ, Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Ա. Ս. ԳԱԼՍՏՅԱՆ, Ի. Ռ. ՀԱՐՈՒԹՅՈՒՆՈՎԱ և Գ. Ա. ՇԱՀՆԱԶԱՐՅԱՆ

N-Գլիցիդիլմորֆոլինի բազայի վրա ստացվել են 1-ամինո-3-N-մորֆոլինո-, 1,3-դի-N-մորֆոլինո-, 1-N-մորֆոլինո-3-N-պիպերիդինո-, 1-N-[բիս-(2-օքսիէթիլ)-ամինո]-3-N-մորֆոլինո-, 1-N-բենզիմիդազոլո-3-N-մորֆոլինո-, 1-N-(5,5-դիմեթիլ)հիդանտոինո-3-N-մորֆոլինոպրոպան-2-ոլեր։ Սինթեզված 1-N-մորֆոլինո-3-N-պիպերիդինոպրոպան-2-ոլից ստացվել են վիցինալամինոսպիրտների Օ-ածանցյալներ։

THE SYNTHESIS OF NEW DERIVATIVES OF MORPHOLINCONTAINING PROPAN-2-OLS

E. G. MESROPYAN, A. A. AVETISSYAN, A. S. GALSTYAN, I. R. HARUTYUNOVA and G. A. SHAHNAZARYAN

The 1-amino-3-N-morpholinopropan-2-ol, 1,3-di-N-morpholinopropan-2-ol, 1-N-morpholino-3-N-piperidinopropan-2-ol, 1-N-[bis-(2-oxyethyl)-amino]-3-N-morpholinopropan-2-ol, 1-N-benzimidazolo-3-N-morpholinopropan-2-ol, 1-N-(5,5-dimethyl)hydantoino-3-N-morpholinopropan-2-ol are synthesized on the base of N-glicidylmorpholine. O-Derivatives of vicinal aminoalcohols are obtained from 1-N-morpholino-3-N-piperidinopropan-2-ol.

ЛИТЕРАТУРА

- [1] Машковский М.Д. Лекарственные средства. М., Новая волна, 2002, т 1,2.
- [2] Bergmeier S.C. // Tetrahedron, 2000, v. 56, p. 2561.
- [3] Karpf M., Trussardi R.J. // J. Org. Chem., 2001, v. 66, p. 2044.
- [4] Inaba T., Yamada Y., Abe H., Sagawa S., Cho H. // J. Org. Chem., 2000, v. 65, p. 1623.
- [5] Cristau H.-J., Pirat J.-L., Drag M., Kafarski P. // Tetrahedron Lett., 2000, v. 41, p. 9781.
- [6] Hudlicky T., Abbod K.F., Entwisle D.A., Fan R., Maurya R., Thorpe A.J., Bolonick J., Myers B. // Synthesis, 1996, №7, p. 897.
- [7] Заявка 19724186(1998). Германия // РЖХим., 2002, 19О 116П.
- [8] Sabitha G., Babu R.S., Rajkumar M., Yadav J.S. // Org. Lett., 2002, №4, p. 343.
- [9] Швайка Ол. Основи синтезу лікарських речовии. Донецьк: Східний видавничий дім. 2002, 300 с.
- [10] *Лукевиц Э.Я., Либерт Л.И., Воронков М.Г.* // Успехи химии, 1970, т. 29, с. 2005.
- [11] Месропян Э.Г., Амбарцумян Г.Б., Аветисян А.А. // ЖОрХ, 2000, т. 36, с. 462.
- [12] *Месропян Э.Г., Амбарцумян Г.Б., Аветисян А.А., Галстян А.С., Меликян Г.С.* // Хим. ж. Армении, 2003, т. 56, №3, с. 97.
- [13] *Месропян Э.Г., Амбарцумян Г.Б., Аветисян А.А., Галстян А.С.* // Хим. ж. Армении, 2003, т. 56, №4, с. 64.
- [14] *Амбарцумян Г.Б., Месропян Э.Г., Аветисян А.А., Галстян А.С., Арутюнова И.Р.* // Ученые записки ЕГУ, 2004, №3, с. 153.
- [15] *Месропян Э.Г., Амбарцумян Г.Б., Аветисян А.А., Галстян А.С., Арутюнова И.Р.* // ЖОрХ, 2005, т. 41, с. 70.