XXVI, № 3, 1973

КРАТКИЕ СООБЩЕНИЯ

УДК 532.73+661.8.532+546.74+541.123.31+546.171.1

РАСТВОРИМОСТЬ СУЛЬФАТА НИКЕЛЯ В ВОДНО-АММИАЧНЫХ РАСТВОРАХ ПРИ 20 и 40°C

Р. С. МХИТАРЯН, Р. А. ЗАКАРЯН и Г. Г. БАБАЯН

Ереванский государственный университет

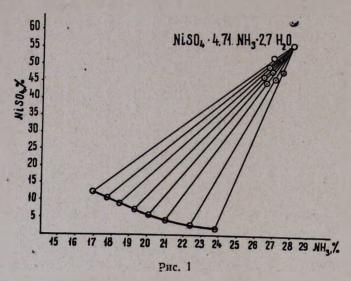
Поступило 7 VII 1972

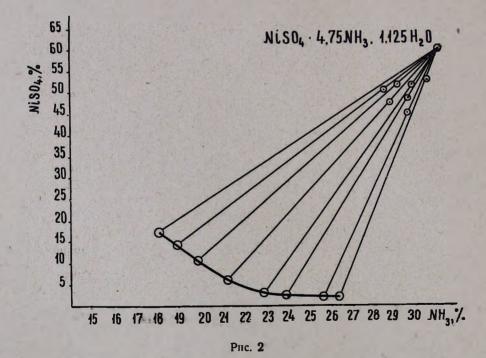
Изучение растворимости солей Zn, Cd, Cu и др. в водных растворах аммиака дает возможность выявить пути использования аммиака как средства для их очистки перекристаллизацией и разделением.

Общензвестно, что взаимодействие между аммиаком и некоторыми металлами (Zn, Cd, Cu и др.) протекает в две стадии: при малых концентрациях аммиака в равновесной жидкой фазе образуются основные соли, а при высоких—аммиакаты. Соли металлов подгруппы II, II, VI и VIII групп образуют аммиакаты MeX_n·mNH₃ и MeX_n·mNH₃·PH₂O общего состава. Основные соли — по составу MeX₂·mMe(OH)₂·nNH₃·SH₂O.

Изучена система NiSO₄—NH₃—H₂O при 20 и 40° с целью определения ее растворимости и влияния температуры на взаимодействие между сульфатом никеля и аммиаком в водной среде в широком интервале концентраций аммиака.

Для определения состава твердой и жидкой фаз они подверглись химическому анализу. Состав твердой фазы определялся методом остатков Шрейнемакерса.

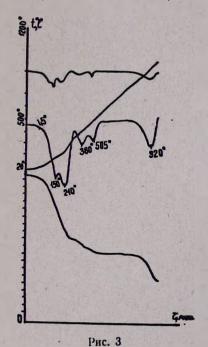

Кристаллизация аммиакатов системы $NiSO_4-NH_3-H_2O$ при 20° начинается при содержании $16,85^\circ/_0$ аммиака и завершается при $23,9^\circ/_0$ (рис. 1) с образованием $NiSO_4\cdot 4,71NH_3\cdot 2,7H_2O$ в виде темнофиолетовых кристаллов.

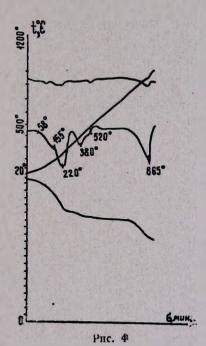

Как видно из изотермы растворимости (рис. 2), при 40° кристаллизация наступает при 18, $19^0/_0$ -ном содержании аммиака и завершается при $26,5^0/_0$ с получением соединения $NiSO_4 \cdot 4,75NH_3 \cdot 1,12H_2O$.

Твердые фазы основных солей сульфата никеля являются образованиями переменного состава — все они содержат аммиак и имеют состав $NiSO_4 \cdot mNi(OH)_2 \cdot nNH_3 \cdot sH_2O$, где m, n, s имеют различные значения (табл.).

Полученные данные говорят о том, что при увеличении концентрации аммиака в системе нарастает молекулярное отношение NH₃/

 $NiSO_4$, которое в дальнейшем остается постоянным, что указывает на завершение образования основных солей и начало образования аммиакатов.




Изучены кривые нагревания аммиакатов $NiSO_4 \cdot 4,71NH_3 \cdot 2,71H_2O$ и $NiSO_4 \cdot 4,75NH_3 \cdot 1,12H_2O$. Установлено, что при 45 и 58° удаляется вода, при 380 и 505° — все молекулы аммиака, и остается чистый $NiSO_4$, который при 865—920° разлагается до чистого NiO (рис. 3, 4).

Таблица

Состав твердой фазы основных солей при 20 и 40°, %

При 20°				100000000000000000000000000000000000000
NH3	NISO ₄	NI(OH)2	Н2О	Состав
1,35	42,96	7,17	48,52	NiSO ₄ -2,9NH ₃ -0,06Ni(OH) ₂ -8,14H ₂ O
1,10	39,90	2,95	56,05	
2,50	36,30	2,48	58,72	
4,59	37,26	8,64	50,49	
6,07	38,12	7,65	51,84	
9,43	34,40	18,05	38,12	
12,20	39,70	7,25	40,85	
13,21	40,00	3,21	43,60	
14,11	43,00	1,80	41,10	
0,71	61,11	30,80	7,4	NISO ₄ ·2,4NH ₃ ·0,002Ni(OH) ₂ ·4,44H ₂ O
4,42	66,04	29,20	10,54	
13,40	43,41	23,30	19,90	
5,03	45,20	12,80	36,97	
8,14	66,30	23,40	2,16	
2,20	45,50	21,20	31,10	
4,97	57,80	9,80	28,43	
12,60	57,10	1,23	29,17	
15,00	56,01	0,01	28,98	

ЛИТЕРАТУРА

- 1. Г. Г. Уразов, А. К. Киракосян, Р. С. Мхитарян, ЖНХ, 3, 464, 470 (1958):..
- 2. А. К. Киракосян, ЖНХ, 4, 2779 (1959).
- 3. Р. С. Мхитарян, Канд. дисс., Ереван, ЕГУ, 1957.