XXVI, № 10, 1973

УЛК 542.91 +547.495.9

### производные гуанидина

XVI. СИПТЕЗ АЛКИЛИРОВАННЫХ 4-АЛКОКСИФЕНИЛАЦЕТОНИТРИЛОВ И ЗАМЕЩЕННЫХ ГУАНИДИНОВ

#### т. р. овсепян, а. с. петросян и а. а. ароян

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

#### Поступило 19 VII 1972

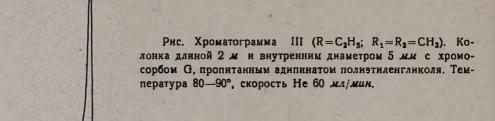
С целью испытання гипотензивных свойств синтезированы замещенные гуанидины I и VI. Проведено алкилирование 4-алкоксибензилцианидов с последующим каталитическим гидрированием полученных нитрилов III в соответствующие первичные амяны IV.

Рис. 1, табл. 4, библ. ссылок 5.

Наличие активных гипотензивных средств среди производных гуанидина, сочетающих в структуре самые различные группы, является основанием для поисков новых веществ этого класса соединений. Для изучения связи структуры с симпатолитической активностью синтезирован и исследован многообразный ряд замещенных гуапидинов [1]. Однако среди них почти нет соединений, содержащих различные алкильные заместители в алифатической цепи между гуанидиновой группой и арильным радикалом.

В настоящей работе в продолжение предыдущих исследований [2] проведен синтез гуанидинов со структорой I.

a,  $R=CH_3$ ,  $C_2H_6$ ,  $C_3H_7$ ;  $R_1=H$ ;  $R_2=CH_3$ ,  $C_2H_5$ ;


6,  $R = CH_3$ ,  $C_2H_5$ ,  $C_3H_7$ ;  $R_1 = R_2 = CH_3$ ,  $C_2H_5$ ,  $C_3H_7$ .

# Синтез осуществлен по схеме

$$RO \underbrace{\begin{array}{c} CH_{2}CN & \xrightarrow{A_{3}R\Gamma} \\ NaNH_{2} \end{array}}_{III} RO \underbrace{\begin{array}{c} C(R_{1}R_{2})CN & \xrightarrow{[H], \ NI/Cr_{3}O_{2} \\ NH_{3} \end{array}}_{NH_{3}}$$

$$RO \underbrace{\begin{array}{c} CH_{3}SC \stackrel{NH}{\swarrow}_{NH_{3}} 0.5H_{3}SO_{4} \\ IV \end{array}}_{IV} I$$

Исходные нитрилы III синтезированы алкилированием 4-алкоксибензилцианидов [3] алкилгалогенидами в присутствии амида натрия в среде бензола [4]. Их чистота подтверждена хроматографированием в тонком слое окиси алюминия, при котором они обнаруживаются одним пятном, за исключением двух соединений (III,  $R=CH_3$ ;  $R_1=R_2=C_3H_7$ ;  $R=C_2H_5$ ;  $R_1=R_2=CH_3$ ), дающих на хроматограмме еще одно, менее интенсивное пятно с  $R_1=0.73$ . Газожидкостное хроматографирование одного из них с  $R=C_2H_5$ ;  $R_1=R_2=CH_3$  выявило два пика, по расчету площадей которых процентное содержание компонентов смеси соответствует 2:98 (рис.). Гидрирование замещенных ацетонитрилов III в автоклаве в присутствии стандартного промышленного катализатора никеля на окиси хрома привело к соответствующим первичным аминам IV с 63—85%-ными выходами. Из них получены кристаллические гидрохлориды.



Для синтеза производных гуанидина I соединения IV вводились в реакцию с сульфатом S-метилизотиомочевины в водноспиртовой среде. Гуанидины получались в виде бесцветных кристаллических веществ, некоторые из которых сильно гигроскопичны.

Параллельно синтезированы некоторые замещенные гуанидины со структурой VI взаимодействием 4-алкоксибензилизотиоцианатов [5] с аминогуанидином

ROCCH<sub>2</sub>NCS 
$$\xrightarrow{NH_{3}NHC} \xrightarrow{NH_{2}-HNO_{3}}$$
 ROCCH<sub>2</sub>NHCNHNHC $\xrightarrow{NH_{2}}$  HNO<sub>3</sub> VI

R=CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>, C<sub>3</sub>H<sub>7</sub>.

Полученные соединения VI представляют интерес не только для испытания их биологических свойств, но и для дальнейшего их превращения в различные гетероциклические системы.

### Экспериментальная часть

4-Алкоксифенилалкилацетонитрилы (III,  $R_1$ =H,  $R_2$ = $CH_3$ ,  $C_2H_5$ ). К раствору 0,1 моля II в 30 мл абс. бензола при перемешивании добавляют по частям 3,9 z (0,1 моля) амида натрия и смесь кипятят 2 часа. Затем прикапывают 0,11 моля йодистого метила или бромистого этила и нагревание с перемешиванием продолжают в течение 4 час. По охлаждении приливают воду до растворения осадка, экстрагируют бензолом, бензольный слой сушат над прокаленным сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме (табл. 1).

4-Алкоксифенилдиалкилацетонитрилы (III,  $R_1 = R_2 = CH_3$ ,  $C_2H_5$ ,  $C_3H_7$ ). Получены аналогично из 0,1 моля II в 30 мл безводного бензола, 7,8 г (0,22 моля) амида натрия и 0,21 моля йодистого метила или бромистого этила (табл. 1).  $R_f$  в пределах 0,64—0,69 в тонком слое окиси алюминия в системе эфир—петролейный эфир (1:1).

β-(4-Алкоксифенилмоно- и диалкил) этиламины (IV). Смесь 0,1 моля III, 4 г катализатора никеля на окиси хрома и 100 мл насыщенного метанольного раствора аммиака помещают в автоклав и при 110° пропускают водород под давлением 110 атм. Необходимое количество водорода поглощается за 5—6 час. Катализатор отфильтровывают и после отгонки растворителя остаток перегоняют в вакууме.

Гидрохлориды аминов получены обработкой их эфирных растворов насыщенным эфирным раствором хлористого водорода (табл. 2).

Сульфаты N- $\beta$ -(4-алкоксифенилмоно- и диалкил) этилгуанидинов (1). Смесь 0,01 моля IV, 1,4 г (0,01 моля) сульфата S-метилизотиомочевины и 10 мл 50%-ного этилового спирта нагревают на водяной бане в течение 5 час. Затем, добавляя бензол, отгоняют растворитель, к остатку приливают абс. эфир, выпавшие кристаллы отфильтровывают и перекристаллизовывают из абс. этанола (табл. 3).

Нитраты 1-амидино-4-(4-алкоксибензил) тиосемикарбазидов (VI). К раствору 0,025 моля V в 15 мл диметилформамида добавляют 3,4 г (0,025 моля) нитрата аминогуанидина и смесь нагревают на водяной бане 5 час. По охлаждении приливают 50 мл абс. эфира. Образовавшийся красный маслообразный продукт после многократной обработки эфиром и длительного стояния в холодильнике частично кристаллизуется. Перекристаллизацию проводят из этанола (табл. 4).

|                               |                               | 100                           |            |                            | and the second s |
|-------------------------------|-------------------------------|-------------------------------|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R                             | R <sub>1</sub>                | R <sub>2</sub>                | Выход, 0/0 | Т. кип.;<br>°C/1 <i>мм</i> | Молекулярная<br>формула                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>3</sub>               | н                             | СН                            | 47,4       | 114—116                    | C <sub>10</sub> H <sub>11</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CH <sub>3</sub>               | Н                             | C <sub>2</sub> H <sub>5</sub> | 38,3       | 116-118                    | C <sub>11</sub> H <sub>13</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>2</sub> H <sub>5</sub> | Н                             | CH <sub>3</sub>               | 62,9       | 121—123                    | C <sub>11</sub> H <sub>13</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>2</sub> H <sub>5</sub> | Н                             | C <sub>2</sub> H <sub>5</sub> | 59,5       | 123—125                    | C <sub>12</sub> H <sub>15</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>2</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub>               | 52,9       | 125—127                    | C <sub>12</sub> H <sub>15</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>3</sub> H <sub>7</sub> | н                             | C <sub>2</sub> H <sub>5</sub> | 52,4       | 128130                     | C <sub>13</sub> H <sub>17</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CH <sub>3</sub>               | CH <sub>3</sub>               | CH <sub>3</sub>               | 57,7       | 110-112                    | C <sub>11</sub> H <sub>13</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CH <sub>3</sub>               | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 60,6       | 114—116                    | C13H17NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>3</sub>               | C <sub>3</sub> H <sub>7</sub> | C <sub>3</sub> H <sub>7</sub> | 70,2       | 137—139                    | C <sub>15</sub> H <sub>21</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub>               | CH <sub>3</sub>               | 64,0       | 119-121                    | C12H15NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>2</sub> H <sub>5</sub> | C,H,                          | C <sub>2</sub> H <sub>5</sub> | 69,6       | 124—125                    | C <sub>14</sub> H <sub>18</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | CH <sub>3</sub>               | 67,1       | 122-124                    | C13H17NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>3</sub> H <sub>1</sub> | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 59,7       | 124—126                    | C <sub>15</sub> H <sub>21</sub> NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                               |                               | 1          | - 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| R                             | R <sub>1</sub>                | R <sub>2</sub>                | Выход, 0/0 | Т. кип.,<br>°C/1 мм | Молеку-<br>лярная<br>формула       | d <sup>20</sup> |
|-------------------------------|-------------------------------|-------------------------------|------------|---------------------|------------------------------------|-----------------|
| СН                            | Н                             | СНа                           | 71,3       | 108—109             | C <sub>10</sub> H <sub>15</sub> NO | 1,0159          |
| CH,                           | Н                             | C <sub>2</sub> H <sub>5</sub> | 64,2       | 110—112             | C <sub>11</sub> H <sub>17</sub> NO | 0,9954          |
| C <sub>2</sub> H <sub>5</sub> | Н                             | CH <sub>3</sub>               | 76,3       | 114-116             | C <sub>11</sub> H <sub>17</sub> NO | 0,9932          |
| C <sub>2</sub> H <sub>8</sub> | Н                             | C <sub>2</sub> H <sub>5</sub> | 76,6       | 117—119             | C <sub>12</sub> H <sub>19</sub> NO | 0,9768          |
| C <sub>3</sub> H <sub>7</sub> | Н                             | CH <sub>3</sub>               | 70,6       | 118—120             | C <sub>12</sub> H <sub>19</sub> NO | 0,9844          |
| C <sub>3</sub> H <sub>1</sub> | Н                             | C <sub>2</sub> H <sub>5</sub> | 64,8       | 122-124             | C <sub>13</sub> H <sub>21</sub> NO | 0,9627          |
| CH <sub>3</sub>               | CH <sub>a</sub>               | CH <sub>3</sub>               | 77,9       | 102—104             | C11H11NO                           | 1,0087          |
| CH <sub>3</sub>               | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 66,3       | 108—110             | C13H21NO                           | 0,9948          |
| CH <sub>3</sub>               | C <sub>3</sub> H <sub>7</sub> | C <sub>3</sub> H <sub>7</sub> | 85,5       | 112—113             | C15H25NO                           | 0,9802          |
| C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub>               | CH <sub>3</sub>               | 65,2       | 115—116             | C <sub>12</sub> H <sub>19</sub> NO | 0,9945          |
| C,H                           | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 62,8       | 117119              | C14H23NO                           | 0,9819          |
| C <sub>3</sub> H <sub>7</sub> | CH <sub>3</sub>               | CH <sub>3</sub>               | 68,8       | 120—122             | C13H21NO                           | 0,9681          |
| C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>1</sub> | C <sub>2</sub> H <sub>5</sub> | 63,9       | 121—123             | C <sub>15</sub> H <sub>25</sub> NO | 0,9664          |

RO CCH,NH,

| - 60            |         | Ана    | Ли      | 3,     | 0/0     |        |                                      | Гидр          | охлорид |        |  |
|-----------------|---------|--------|---------|--------|---------|--------|--------------------------------------|---------------|---------|--------|--|
| 22              | C       |        | h       | 1      | 1       |        |                                      |               | CI,     | %      |  |
| n <sup>20</sup> | найдено | вычис- | найдено | вычис- | пайдено | вычис- | Молекулярная<br>формула              | т. пл.,<br>°С | найдено | вычис- |  |
| 1.5302          | 73,01   | 72,69  | 9,36    | 9,15   | 8,74    | 8,48   | C10H16CINO                           | 128—130       | 18,01   | 17,58  |  |
| 1,5242          | 73,64   | 73,70  | 9,42    | 9,55   | 7,52    | 7,81   | C11H18CINO                           | 125-127       | 0-000   | -      |  |
| 1,5270          | 73,86   | 73,70  | 9,35    | 9,55   | 7,81    | 7,81   | C11H18CINO                           | 130—132       | 16,73   | 16,43  |  |
| 1,5041          | 74,67   | 74,62  | 9,93    | 9,96   | 7,80    | 7,25   | C13H20CINO                           | 131-132       | 15,24   | 15,44  |  |
| 1,5064          | 74,47   | 74,62  | 9,72    | 9,96   | 7,11    | 7,25   | C12H20CINO                           | 148-150       |         | -      |  |
| 1,4949          | 75,05   | 75,31  | 10,17   | 10,21  | 6.53    | 6,76   | C <sub>13</sub> H <sub>22</sub> CINO | 182-184       | _       |        |  |
| 1,5308          | 73,51   | 73,70  | 9.38    | 9,55   | 7,64    | 7,81   | C11H18CINO                           | 123-125       | _       |        |  |
| 1,5076          | 75,22   | 75,31  | 10,03   | 10,21  | 6,45    | 6,76   | C <sub>13</sub> H <sub>23</sub> CINO | 197-199       | _       |        |  |
| 1,5059          | 76,31   | 76,54  | 10,60   | 10,71  | 5,73    | 5,95   | C <sub>15</sub> H <sub>20</sub> CINO | 140 - 141     | 13.09   | 13.04  |  |
| 1,5002          | 74,40   | 74,62  | 9,59    | 9,96   | 7,14    | 7,25   | C12H20CINO                           | 133 –135      | 15,83   | 15,44  |  |
| 1,5191          | 76, 12  | 75,97  | 10,29   | 10,47  | 6,52    | 6,33   | C14H34CINO                           | 134-135       | 14,15   | 13,76  |  |
| 1,4912          | 75,31   | 75,31  | 10,00   | 10,21  | 6,71    | 6,76   | C <sub>13</sub> H <sub>2</sub> ,CINO | 131—133       | 14,94   | 14,54  |  |
| 1,5072          | 77,11   | 76,54  | 11,00   | 10,71  | 6,43    | 5,95   | C15H26CINO                           | 170—171       | -       | _      |  |
|                 | 13.73   | 13     |         |        |         |        | 100                                  | -             | -       | 100    |  |

Таблица 3

$$RO \bigcirc \begin{matrix} R_1 \\ CCH_2NHC \\ NH_2 \end{matrix} \cdot 0.5H_2SO_4$$

|                               |                               | R <sub>2</sub>                | 1, 0/0 | Т. пл.,<br>°С |                         | Анализ, % |                |         |               |  |
|-------------------------------|-------------------------------|-------------------------------|--------|---------------|-------------------------|-----------|----------------|---------|---------------|--|
|                               | 100                           |                               |        |               | M                       | 1         | <b>1</b>       | S       |               |  |
| R                             | Ri                            |                               |        |               | Молекулярная<br>формула | OH:       |                | ЭНО     | 5             |  |
|                               | 900                           |                               | ыход,  | 3000          |                         | найдено   | вычис-<br>лено | найдено | вычис<br>лено |  |
|                               |                               |                               | 8      |               | St 11 2 - 1             | = =       | 19 P           | на      | He He         |  |
| CH <sub>3</sub>               | н                             | CH <sub>3</sub>               | 50.8   | 111—113       | C,1H17N3O-0,5H2SO4      | 15,98     | 16,39          | 6.57    | 6,25          |  |
| CH <sub>3</sub>               | н                             | C <sub>2</sub> H <sub>5</sub> | 74,1   | 93 – 95       | C12H19N3O-0,5H2SO4      | 15,31     | 15,54          |         | 5,93          |  |
| C <sub>2</sub> H <sub>5</sub> | н                             | CH <sub>3</sub>               | 63,0   | 186188        | C12H19N3O 0,5H2SO4      | 15,10     | 15,54          |         | 5,93          |  |
| C <sub>2</sub> H <sub>5</sub> | Н                             | C <sub>2</sub> H <sub>5</sub> | 39,3   |               | C13H21N3O-0,5H2SO4      | 14,56     | 14,78          |         | 5,64          |  |
| CH <sub>3</sub>               | CH <sub>a</sub>               | CH,                           | 70,4   | 120-122       | C12H19N2O-0,5H2SO4      | 16,01     | 15,54          |         | 5,93          |  |
| CH <sub>3</sub>               | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 53,4   | 9799          | C14H23N3O.0,5H2SO4      | 14,21     | 14,08          |         | 5.37          |  |
| CH,                           | C <sub>3</sub> H <sub>4</sub> | C <sub>3</sub> H <sub>7</sub> | 50,0   | 122-124       | C16H27N3O-0,5H2SO4      | 13,11     | 12,87          |         | 4,91          |  |
| C <sub>2</sub> H <sub>5</sub> | CH <sub>a</sub>               | CH <sub>3</sub>               | 67,8   | 125—127       | C13H21N3O.0,5H2SO4      | 15,21     | 14,78          |         | 5,64          |  |
| C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 57,3   | 135—137       | C15H25N3O.0,5H2SO4      | 13,73     | 13,45          |         | 5,13          |  |
| C <sub>3</sub> H <sub>1</sub> | CH,                           | CH <sub>3</sub>               | 36,7   | *             | C14H23N3O-0,5H2SO4      | 14,17     | 14,08          | 5,63    | 5,37          |  |
| C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | 50,4   |               | C16H27N3O-0,5H2SO4      | 12,65     | 12,87          | 4,72    | 4,91          |  |
|                               |                               |                               | 3.     | 33.9          | Marine III              | 1         |                |         |               |  |

<sup>\*</sup> Гигроскопичен.

Таблица 4

| 100                           | .од, 0/0 | Т. пл.,<br>°C |                                                                 | А н а л н з, 0/0 |       |         |              |        |       |         |        |  |
|-------------------------------|----------|---------------|-----------------------------------------------------------------|------------------|-------|---------|--------------|--------|-------|---------|--------|--|
|                               |          |               | Молекулярная<br>формула                                         |                  | С     | H       |              | N      |       | 1 S     |        |  |
| R                             |          |               |                                                                 | найдено          | HC-   | найдено | 4HC-         | айдено | HC-   | найдено | HC-    |  |
|                               | Выход,   | 106           |                                                                 | най,             | вычис | най     | вычи<br>лено | най,   | ленс  | H B T   | вычис- |  |
| CH <sub>3</sub>               | 19,0     | 185—186       | C <sub>10</sub> H <sub>16</sub> N <sub>6</sub> O <sub>4</sub> S | 37,61            | 37,97 | 5,61    | 5,10         | 26,43  | 26,57 | 10,26   | 10,14  |  |
| C <sub>2</sub> H <sub>5</sub> | 18,2     | 188—190       | C11H18N8O4S                                                     | 40,04            | 39,99 | 6,01    | 5,49         | 25,20  | 25,44 | 9,21    | 9,71   |  |
| C <sub>3</sub> H <sub>7</sub> | 13,9     | 190—192       | C12H20N4O4S                                                     | 41,56            | 41,85 | 5,47    | 5,85         | 24,13  | 24,40 | 9,07    | 9,31   |  |
|                               |          | 1000          | 2752000                                                         |                  |       |         |              |        | 1 -   | 1       | l      |  |

## ԳՈՒԱՆԻԴԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

XVI. ԱԼԿԻԼՎԱԾ 4-ԱԼԿՕՔՍԻՖԵՆԻԼԱՑԵՏՈՆԻՏՐԻԼՆԵՐԻ ԵՎ ՏԵՂԱԿԱԼՎԱԾ ԳՈՒԱՆԻԳԻՆՆԵՐԻ ՍԻՆԹԵՉ

P. A. 2040basut, u. v. abstrousut & 2. u. 20thsut

Նատրիումի ամիդի ներկայությամբ մեթիլյոդիդի կամ էթիլբրոմիդի հետ 4-ալկօջսիբենզիլցիանիդների փոխազդմամբ սինթեզված են մոնո- և դիալկիլ-տեղակալված 4-ալկօքսիֆենիլացետոնիտրիլներ (III)։ Վերջիններիս կատալիտիկ Դիդրումով ստացված են համապատասխան առաջնային ամիններ (IV). S-Մեթիլիզոթիոմիղանյութի սուլֆատի հետ նրանց ռեակցիայով սինթեղված են տեղակալված գուանիդիններ (I)։ 4-Ալկօքսիբենզիլիզոթիոցիանատների և ամինագուանիդինի փոխաղդմամբ զուգահեռաբար ստացված են դուանիդինի ածանցյալներ (VI)։

#### **GUANIDINE DERIVATIVES**

# XVI. SYNTHESIS OF ALKYLATING 4-ALKOXYPHENYLACETONITRILES AND SUBSTITUTED GUANIDINES

T. R. HOVSEPIAN, A. S. PETROSSIAN and H. A. HAROYAN

The mono- and dialkylsubstituted 4-alkoxyphenylacetonitriles has been obtained. The reduction of nitriles catalytically yields the corresponding primary amines. By the interaction of amines with S-methylsothiourea a series of guanidine derivatives have been prepared.

#### ЛИТЕРАТУРА

- 1. С. С. Либерман, Л. Н. Яхонтов, ЖВХО, 10, 616 (1965).
- 2. Т. Р. Овсепян, А. С. Петросян, А. А. Ароян, Арм. хим. ж., 25, 876 (1972); П. Р. Акопян, Т. Р. Овсепян. А. А. Ароян, Арм. хим. ж., 26, 234 (1973).
- 3. А. Л. Миджоян, А. А. Ароян, Т. Р. Овсепян, Изв. АН Арм. ССР, ХН, 14, 157 (1961).
- 4. T. Kametani, K. Kigasawa, M. Hilragi, T. Aoyaama, O. Kusama, J. Med. Chem., 14, 72, (1971).
- А. А. Ароян, Т. Р. Овсепян, П. Р. Акопян, Арм. хим. ж., 22, 493 (1969).