XXV, № 9, 1972

УДК54.114+

ИССЛЕДОВАНИЕ В ОБЛАСТИ ПОЛУСИНТЕТИЧЕСКИХ ПЕНИЦИЛЛИНОВ

VI. НЕКОТОРЫЕ НЕЗАМЕЩЕННЫЕ 2-АРАЛКИЛЗАМЕЩЕННЫЕ: КАРБОКСИ-, КАРБАЛКОКСИАЛКИЛПЕНИЦИЛЛИНЫ И ДИПЕНИЦИЛЛИНЫ

А. Л. МНДЖОЯН , М. Г. ЦИНКЕР, Э. С. МКРТЧЯН, Ю. З. ТЕР-ЗАХАРЯН, Ш. Г. ОГАНЯН и Ш. Л. МНДЖОЯН

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 8 XII 1971

С целью определения антибактериального действия и выявления связи между строеинем и биологическими свойствами ацилированием 6-аминопенициллановой кислоты: (6-АПК) ангидридами и смешанными ангидридами некоторых алифатических дикарбоновых кислот получен ряд новых моно-, ди- и эфиронснициллинов.

Табл. 2, библ. ссылок 8.

Обзор литературы по полусинтетическим пенициллинам показал, что в качестве ацилирующего агента в основном применяются одноосновные карбоновые кислоты. Были использованы также, но сравнительно мало, и двухосновные кислоты. Из них были получены и дипенициллины, в которых обе карбоксильные группы связаны амидной овязью с молекулами 6-АПК. Описаны соединения, полученные из 6-АПК и дигликолевой, камфарной, дибензоилвинной кислот. Некоторые из них действуют на чувствительные формы стафилококов, обладают противогрибковым и противоамёбным действием, отличаются стабильностью в кислой среде [1,2].

В данной работе, в отличие от проведенных нами предыдущих исследований [3] по полусинтетическим пенициллинам, полученным из моно-карбоновых кислот, приводятся данные по синтезу и изучению свойствнекоторых пенициллинов незамещенных и замещенных двухосновных карбоновых кислот следующего строения (I, II):

A. R=H; B. R=CH₃, C_3H_5 ; R'=H; $C_8H_5CH_2$; $C_6H_5CHCH_3$;: $C_8H_5CHC_3H_5$; $\pi=0, 1, 2, 3$.

Армянский химический журнал, XXV, 9-6

CONH—CH—CH—CH—COOH

R—CH—O=C—N—CH—COOH

$$CH_3$$
 CH_3
 CH_3

Пенициллины IA синтезированы ацилированием 6-АПК ангидридами соответствующих кислот, полученными взаимодействием кислот с уксусным ангидридом, взятым в двукратном избытке [4], а IБ ацилированием 6-АПК омешанными ангидридами, полученными из моноэфиров соответствующих дикарбоновых кислот и хлоругольного эфира [5].

Синтез дипенициллинов II осуществлен смешанию-ангидридным ме-

Необходимые замещенные дикарбоновые кислоты получены по следующей схеме:

Для алкилирования монозамещенных малоновых эфиров использованы этиловые эфиры хлоруксусной, пропионовой (β) и масляной (γ) кислот, полученных известными методами. Алкилирование малоновых эфиров проведено 12-часовым натреванием на масляной бане при температуре 160—170° [7].

Чистота, индивидуальность полученных пенициллинов проверена товкослойной хроматографией (табл. 1,2); их структура подгверждена данными элементного анализа и ИК спектроскопии. Обнаружены характерные полосы поглощения карбонила β -лактамного кольца (1780 cm^{-1}), карбонила амидной (1650 cm^{-1}) и карбоксильной (1720 cm^{-1}) групп и соответствующих заместителей (1600—1615 cm^{-1}).

Пенициллины охарактеризованы в виде кислот (табл. 1, 2). Для исследования биологических свойств последние переведены в натриевые соли

Изучение биологических свойств описываемых пенициллинов проводилось общепринятыми методами [3]. Изучено их антимикробное действие на рост грамположительных кокков (золотистый стафилококк, белый стафилококк, стрептококк, стафилококк

адаптированный к бензилленициллину, пенициллиназапродуцирующие устойчивые стафилококки, выделенные в клинике) и палочек (сенная, megaterium); грамотрицательных палочек (кишечная, брюшнотифозная, дизентерийная, синегнойная, протей) и вибрнов Мечникова. Каждый опыт ставился 3—5 раз. Установлено, что испытанные печициллины не активиы в отношении грамотрицательных бэктерий. Они проявили бактерностатическое действие против грамположительных микроорганизмов. Грамположительные кокки более чувствительны к изучаемым пенициллинам, чем грамположительные палочки. В табл. 1,2 приведены значения минимальных бактериостатических концептраций (МБК) пенициллинов, только для золотистого стафилококка, т. к. соотношение в активности для отдельных препаратов такое же, как и в отношении других подопытных грамположительных бактерий. Наиболее активными оказались пенициллины XXI, XLIII, XII, XL. Выявлена корреляция между структурой и антибактериальным действием в изучаемом ряду полусинтетических пенициллинов, а именно, пенициллины незамещенных двухосновных карбоновых кислот, в основном, менее активны, чем -их замещенные аналоги. Особенно наглядно это видно на примере янтарной кислоты.

В отношении адаптированного к бензилпенициллину варивата золотистого стафилококка (шт. 209 р) синтезированные пенициллины не активны. Некоторые пенициллины в 4 раза активнее, чем бензилпенициллин в отношении пенициллиназообразующих устойчивых стафилококков.

Пенициллины, йодометрическая активность которых выше 500 ed/мг, инактивировались стафилококковой пенициллиназой и изучались на кислотостойкость.

Из изученных пенициллинов производных двухосновных карбоновых кислот медленеевсех инактивируются производные адмпиновой кислоты. Все гидролизованные пенициллины этой кислоты в той или иной степени обладают большей устойчивостью к действию стафилококковой пенициллиназы, чем бензилпенициллин. Наиболее устойчивы пенициллины IX и XL. Они разлагаются в количестве 12 (0,2÷23,8) и 11 (2÷27) единиц в час. В тех же условиях разлагается 60 единиц бензилпенициллина. Устойчивость других производных админивой кислоты несколько меньше, но тем не менее и они устойчивее бензилпенициллина. Так скорость гидролиза пенициллинов VI, XLIV, XXVIII, XVI равна 22,3 (13,8÷30,8), 21,5 (4,2÷47,2), 29,6 (5,5÷53,7), 31,6 (17,8÷45,4), 38,9 (27,1÷50,7) единиц за час, соответственно.

Из пенициллинов производных глутаровой кислоты наиболее устойчив пенициллина XXXIX, скорость гидролиза которого 28,2 (3,2 \div 53,2) единиц за час. Другие инактив грованные пенициллины этой кислоты VIII, XI, XLIII разлагаются со скоростью 57,9 (57 \div 58,8), 55,1 (29 \div 81,2), 57,6 (48,4 \div 66,8) единиц за час, соответственно.

Из шести инактивированных производных янтарной кислоты лишь пенициллин. XXVI инактивированся в количестве 16,3 (9,9 ÷ 22,7) единиц за час. Скорость гидролиза остальных пенициллинов этой кислоты (I, IV, X, XXXVIII, XLII) порядка 40—80 единиц. Из производных малоновой кислоты активным оказался только пенициллин XXI: он в 2 раза устойчивее бензилпенициллина.

Стойкость большинства пенициллинов этой группы в кислой среде при рН 1,3 и 37° в водно-спиртовой среде сходна с таковой бензилпенициллина. Период их полураспада 2—4 минуты. Наиболее стабильными пенициллинами этой группы оказались пенициллины I и XXXII с продолжительностью полураспада 20—30 минут.

Максимальная переносимая доза полученных пенициллинов при однократном внутривенном введении мышам находится в интервале 1000—2000 мг/кг.

Экспериментальная часть

Физические константы полученных нами производных малоновой, янтарной, глутаровой кислот соответствуют литературным данным [8].

Диэтиловый эфир «-метилбензилкарбэтоксибутилмалоновой кислоты получен из диэтилового эфира «-метилбензилмалоновой кислоты, синтезированного по описанной в литературе методике [7]—взаимодействием: γ - хлормасляной кислоты с литийгидридом, а затем этиловым эфиром. Выход 70%. Т. кип. 178—9°/2 мм, n_D^{20} 1,491·1. Найдено %: С 66,50; Н 8,24. С₂₁Н₃₀О₆. Вычислено %: С 66,64; Н 7,99.

Аналогично получен диэтиловый эфир α -этилбензилкарбэтоксибутилмалоновой кислоты с выходом 76%. Т. кип. 186—7°/2 мм, n_D^{20} 1,4859. Найдено %: С 67,65; Н 8,52. С $_{22}$ Н $_{32}$ О $_{6}$. Вычислено %: С 67,32; Н 8,21.

а-Метилбензиладипиновая кислота. При гидролизе диэтилового эфнра а-метилбензилкарбэтоксибутилмалоновой кислоты 10%-ным водноспиртовым раствором едкого натра получена а-метилбензилкарбэтоксибутилмалоновая кислота с т. пл. 118—1119°, которая в дальнейшем была подвергнута декарбоксилированию нагреванием при 180—190° в течение 2 часов. Полученная а-метилбензиладипиновая кислота перекристаллизована из смеси бензол-петролейный эфир. Выход 80%, т. пл. 64—65°. Найдено %: С 67,30; Н 7,54. С₁4Н₁вО₄. Вычислено %: С 67,18; Н 7,24. Аналогично получена α-этилбензиладипиновая кислота с выходом 86%, т. пл. 141°. Найдено %: С 67,95; Н 7,85. С₁5Н₂оО₄. Вычислено %: С 68,12; Н 7,62. Т. пл. α-этилбензилкарбоксибутилмалоновой кислоты—163°.

Ангидрид α -метилбензиладипиновой кислоты получен с выходом 72% действием уксусного ангидрида, взятого из расчета 2 молей ангидрида на моль кислоты. Т. кип. ангидрида α -метилбензадипиновой кислоты—192—5°/1 мм. Найдено %: С 72,45; Н 7,25 $C_{14}H_{16}O_3$. Вычислено %: 72,39; Н 6,94. Т. пл. аналогично полученного антидрида α -этилбензиладипиновой кислоты—47—9°. Найдено: С 73,15; Н 7,50. $C_{15}H_{18}O_3$. Вычислено %: С 73,10; Н 7,77.

Полученные ангидриды представляют собой тягучие, труднокристаллизующиеся вещества.

Метиловый эфир α -метилбензиладипиновой кислоты получен взаимодействием ангидрида α -метилбензиладипиновой кислоты с метиловым опиртом с июпользованием небольшого количества концентрированной серной кислоты с выходом 38%, т. кип. 152°/2 мм, n_D^{20} 1,4980. Найдено %: С 68,35; Н 7,35. $C_{18}H_{20}O_4$. Вычислено %: С 68,12; Н 7,62. Метиловый эфир α -этилбензиладипиновой кислоты получен аналогично с выходом 35%. Т. кип. 158/2 мм, n_D^2 1,5008. Найдено %: С 69,20; Н 7,55 $C_{16}H_{22}O_4$. Вычислено %: С 69,04; Н 7,86.

Карбокси-, карбалкокси-, 2-аралкилзамещенные карбокси-, карбалкоксиалкилпенициллины. IA. Суопензию 4,32 г (0,02 моля) 6-АПК в 12 мл диметилформамида и 9 мл триэтиламина перемешивают 2 часа при 0°, затем прибавляют в течение 10 минут 0,02 моля ангидрида соответствующей дикарбоновой кислоты, перемешивают 30 минут при 0° и 2 часа при комнатной температуре. К реакционной смеси добавляют 50 мл годы, затем вистрагируют эфиром. Эфирную вытяжку отбрасывают, а водный слой охлаждают до 7°, добавляют к нему 100 мл эфира, подкисляют 1 н соляной кислотой до рН 2. Эфирный слой отделяют, подкисленный водный слой экстратируют эфиром. Соединенные эфирные экстракты промывают ледяной водой, встряхивают с безводным сульфатом натрия и углем. Из эфирного экстракта пенициллин извлекают дроб-

	4			0/0	311.5		Анализ, ⁰ / ₀ N S					Минимальная бактерноста- тическая кон-
№ препара- тов	R	R'	ח	Buxoa, 0/	Т. пл., °С¹	Молекулярная формула	найдено	вычис-	найдено	вычис-	R _f ²	центрация (мкг/мл) Staph, aureus 209 p.
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Н	н	1	53	101—103	C12H16N2O6S	8,85	9,05	10,13	9,85	0,77	15,60
II	н	н	2	46	105—107	C13H18N2O8S	8,48	8,74	9,70	9,86	0,79	6,25
III	н	н	3	63	121-123	C14H20N2O6S	8,14	7,92	9,31	9,60	0,81	500
1V	н	C ₆ H ₅ CH ₂	1	55	84—86	C19H22N2O6S	6,89	6,68	7,94	8,24	0,75	3,12
v	Н	C ₆ H ₅ CH ₂	2	64	77—78	C20H24N2O6S	6,66	6,91	7,62	7,82	0,78	62,5
VI	Н	C ₆ H ₅ CH ₂	3	62	92-84	C21H26N3O6S	6,44	6,15	7,37	7,61	0,82	3,120
VII	Н	C ₆ H ₅ CHCH ₃	1	75	115—117	C20H22N2O6S	6,66	6,52	7,62	7,85	0,75	0,19
VIII	н	CaHaCHCHa	2	52	112-114	C21H26N2O6S	6,44	6, 15	7,37	7,60	0,69	0,05
ıx	Н	CaHaCHCH3	3	60	98-100	C22H28N2O6S	6,27	6,52	7,14	7,45	0,71	0,19
X	н .	CaHaCHCaHa	1	68	128—129	C21H26N2O6S	6,44	6,35	7,37	7,10	0,76	0,19
XI	н	C4H5CHC2H5	2	53	134—136	C22H38N2O6S	6,27	6,45	7,14	7,22	0,78	0,098
XII	н	C ₆ H ₅ CHC ₂ H ₅	3	63	113-115	C23H30N2O6S	6,05	6,38	6,93	7,20	0,73	0,01
XIII	C₂H₅	Н	0	58	70—72	C ₁₃ H ₁₈ N ₂ O ₆ S	8,48	8,23	9,70	9,54	0,79	6,25

				7-1		W				Про	должени	е таблицы
1	2	3	4	5	6	7	8	9	10	11	12	13
XIV	C ₂ H ₅	н	1	71	65—67	C14H18N2O6S	8,14	7,87	9,31	9.30	0,82	3,12
xv	C ₂ H ₅	H	2	68	94—96	C15H20N2O8	7,81	8,12	8.93	8,65	0,77	0.78
XVI	C,H,	Н	3	56	117—119	C16H24N2O6S	7,52	7,25	8,60	8,55	0,68	1 1 1 1 1 1
XVII	CH ₃	C ₆ H ₅ CH ₂	0	59	87 –89	C1.H2.N.O.S	6,94	7.25	7,94	8,25	0,76	0,19
XVIII	CH ₃	C.H.CH.	1	79	95—97 ·	C20H24N2O4S	6,66	6,45	7,62	7,92	0.74	0,48 0,90
XIX	CH ₃	C.H.CH.	2	65	82—85	C31H26N2O6S	6,44	6.75	7,37	7,38	0,74	0,39
XX	CH ₃	C ₈ H ₈ CH ₂	3	69	100- 102	C22H28N2O.S	6,27	6,50	7,14	6,83	0,75	
XXI	CH ₃	C.H.CHCH.	0	70	104—106	C20H21N3O.S	6,66	6,78	7,62	7,43	0.85	0,78
XXII	CH ₃	C.H.CHCH,	1	78	116-118	C21H26N2O6S	6,44	6.15	7,37	7,45	0,78	<0,01
XXIII	CH,	C.H.CHCH.	2	65	84-86	C22H28N2O6S	6,27	6,48	7,14	6,98	0,74	1,56
XXIV	CH,	C.H.CHCH	3	70	76—78	C ₂₃ H ₃₀ N ₂ O ₄ S	6,05	6,28	6,93	6,65		0,78
XXV	CH ₃	C.H.CHC.H.	0	72	108-110	C21H20N2O4S	6,44	6,13	7,37	7.56	0,77	0,78
XXVI	CH ₃	C.H.CHC.H.	1	66	97—99	C ₂₂ H ₂₈ N ₂ O ₄ S	6,27	6,12	7,14		0,80	0,19
XXVII	CH ₃	C.H.CHC.H.	2	78	79—81	C23H30N2O7S	6,05	6,25	6.93	6,85	0,86	0,07
XXVIII	СНз	C ₆ H ₅ CHC ₃ H ₅	3	65	84—86	C ₂₄ H ₃₂ N ₂ O ₆ S	5,87	5,57	6,72	7,20 7,08	0,81 0,70	0,39 0,07

 ¹ Плавятся с разложением.
 2 Носитель — аптечный тальк, система: бутанол—эфир—ацетон—вода (14—4,5—4,5—5).

№ препара- тов		n	Выход, 0/0	Т. пл., °С¹	Молекулярная формула	A_1	нал	и з, °/ ₀			Минимальная бактерноста- тическая кон-
	R					найдено	вычис-	найдено	вычис-	R _f ²	центрация, (мкг/мл) Staph. aureus 209 p
XXIX	н	0	63	122-124	C19H24N4O3S2	11,19	10,84	12,81	12,53	0,64	>7,80
XXX	Н	1	53	84-86	C20H26N4O8S2	10,88	10.52	12,45	12,21	0,80	62,50
XXXI	Н	2	54	88—90	C21H28N4O8S2	10,59	10,32	12,12	11,87	0,78	15,60
XXXII	Н	3	57	105—107	C22H30N3O8S2	10,03	9,75	11,81	11,53	0,73	0,78
XXXIII	C.HCH.	0	46	135—137	Can H30 N4 O8S	9,49	9,15	10,85	10,55	0,87	0,24
XXXIV	CaHs-CHs	1	61	101-103	C27 H32 N4 O8S2	9,28	8,92	10,60	10,51	0,80	12,50
XXXV	C.HCH.	2	60	96 – 98	C28H34N4O8S2	9,05	8,74	10,36	9,98	0,81	3,90
XXXVI	C.HCH.	3	77	104—106	C29H34N4O8S,	8,84	9,15	10,13	9,85	0,82	3,90
XXXVII	С.Н.СНСН,	0	66	142-144	C27H22N4O8S2	9,28	8,93	10,60	10,82	0,85	0,48
XXXVIII	C.H.CHCH,	1	63	126-128	C28H34N4O8S	9,05	8,87	10,36	10,55	0,86	0,12
XXXIX	C.H.CHCH,	2	67	110-112	C, H, N, O, S,	8,84	9,15	10,13	9,82	0,83	0.09
XL	C.H.CHCH.	3	69	118-120	C30H38N4O8S	8,66	8,36	9,91	10,55	0,84	0,02
XLI	C.H.CHC.H.	0	58	135—137	C28H34N4O.S2	9.05	9,17	10,36	9,92	0,79	0,24
XLII	C.H.CHC.H.	1	56	114-116	C29 H38 N4 O8S,	8,84	8,52	10,13	9,70	0,74	0,06
XLIII	C _a H ₅ CHC ₂ H ₅	2	64	128—130	C30H38N4O8S2	8,66	8,86	9,91	10,25	0,70	0,02
XLIV	C.H.CHC.H.	3	68	108—110	C31H40N4O8S	8,47	8,25	9,70	10,05	0,72	0,09

¹ Плавятся с разложением.

Носитель—аптечный тальк, система: бутанол—эфир—ацетон—вода (14—4, 54,5—5).

ным добавлением 8%-ного водного раствора бикарбоната натрия до рН 6,5-7 в водном слое. Последний отделяют, экстрагируют эфиром и подвергают лиофильной сушке. Полученный кристаллический остаток растирают с абсолютным эфиром. Для определения некоторых физикохимических констант небольшую часть натриевой соли повторно переводят в пенициллин-кислоту, эфирный экстракт упаривают при пониженном давлении и остаток кристаллизуют из лигронна (табл. 1). ІБ. Раствор 0,025 моля соответствующего моноэфира дикарбоновой кислоты в 50 мл абсолютного ацетона охлаждают до 0°, прибавляют 2,6 г (0,026 моля) триэтиламина в 25 мл абсолютного адетона, а затем по каплям при перемешивании раствор 3,1 г (0,028 моля) хлорэтилформиата в 35 мл абсолютного ацетона. Перемешивание продолжают еще 30 минут при той же температуре и 2 часа при комнатной. Фильтруют и фильтрат добавляют к смеси, состоящей из 250 мл водного раствора, 6,75 г бикарбоната натрия, 5,4 г (0,025 моля) 6-АПК и 125 мл ацетона. Реакционную смесь перемешивают 3 часа, затем экстрагируют эфиром. Отбросив эфирную вытяжку, охлажденный до 7° водный слой подкисляют 1н соляной кислотой до рН 2. Выделившуюся пенициллин-кислоту извлекают эфиром. дальнейшее выделение натриевой соли пенициллина, очистку и сушку производят аналогично вышеописанному (табл. 1).

Карбоксиалкилен-, 2-аралкилзамещенные карбоксиалкилендипенициллины. К раствору 0,01 моля соответствующей исходной дикарбоновой жислоты в 50 мл абсолютного ацетона при 0° в течение 20—25 минут прибавляют 4,2 мл безводного триэтиламина и 2,17 г (0,02 моля) этил-хлорформиата в 40 мл ацетона, перемешивают 30 минут при 0° и добавляют 4,32 г (0,02 моля) 6-АПК, переведенной в натриевую соль, в воде. Реакционную смесь перемешивают 4 часа при комнатной температуре, затем схладив ее до 10°, экстрагируют эфиром. Водный слой подкисляют при 0° 2 и раствором серной кислоты до рН 2,5—3 и эфиром извлекают выделившуюся дипенициллин-кислоту (табл. 2). Дальнейшая обработка проведена аналогично вышеописанному.

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԿԻՍԱՍԻՆԹԵՏԻԿ ՊԵՆԻՑԻԼԻՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

VI. ՄԻ ՔԱՆԻ ՉՏԵՂԱԿԱԼՎԱԾ, 2-ԱՐԱԼԿԻԼՏԵՂԱԿԱԼՎԱԾ ԿԱՐԲՕՔՍԻ_, ԿԱՐԲԱԼԿ_ ՕՔՍԻԱԼԿԻԼՊԵՆԻՑԻԼԻՆՆԵՐ ԵՎ ԴԻՊԵՆԻՑԻԼԻՆՆԵՐ

u. L. Vurnsuu, v. 4. 844461

Մ. Գ. ՑԻՆԿԵՐ, Է. Ս. ՄԿՐՏՉՑԱՆ, ՅՈՒ. Չ. ՏԵՐ-ՉԱՔԱՐՑԱՆ, Շ. Գ. ՕՀԱՆՑԱՆ, Շ. Լ. ՄՆՋՈՑԱՆ

Ldhnhnid

Հակամիկրորային ազդումը որոշելու և կառուցվածքի ու կենսաբանական հատկությունների միջև եղած կապը ուսումնասիրելու նպատակով մի քանի ալիֆատիկ երկհիմն թթուների անհիդրիդներով և խառը անհիդրիդներով 6-ամինապենիցիլինաթթվի (6-ԱՊԹ) ացիլմամբ ստացված են կիսասինթետիկ մո-

նո-, դի- և էսիներապենիցիլիններ (I ,II)։

(I) պենիցիլինները ստացված են 6-ԱՊԹ նատրիումական աղի, համապատասխան դիկարբոնաԹԹուների անհիդրիդների (R=H) և խառը անհիդրիդների (R=CH₃, C₂H₅) փոխաղդմամբ, իսկ (II) պենիցիլինները՝ 6-ԱՊԹ և համապատասխան ԹԹուների խառը անհիդրիդների փոխազդմամբ։

Պարզված է, որ հրկ⁄ւիմն թթուներից ստացված պենիցիլինները բակտերիաստատիկ Հատկություններ ունեն միայն գրամդրական բակտերիաների նը-

կատմամբ։

Ուսումնասիրված պենիցիլինների շարքում ի Հայտ է բերված կախում (կորրելյացիա) նրանց Հակաբակտերիալ ազդեցության և կառուցվածքի միջև՝ չտեղակալված երկհիմն թթուներից ստացված պենիցիլինները հիմնականում ավելի պակաս ակտիվ են, քան նրանց տեղակալված համանմանները։ Ուսում-նասիրված բոլոր պենիցիլինները քիչ թունավոր են թթվակայուն չեն։ Պենիցի-լինազայի ազդեցության նկատմամբ ամենակայունը ադիպինաթթվի ածանց-յալներն են։

INVESTIGATION IN THE FIELD OF SEMISYNTHETIC PENICILLINS

VI. SOME NON-SUBSTITUTED, 2-ARALKYLSUBSTITUTED CARBOXY-, CARBALKOXYALKYLPENICILLINS AND DIPENICILLINS

A. L. MNJOYAN . M. O. ZINKER, E. S. MKRTCHIAN, Yu. Z. TER-ZACHARIAN Sh. G. OGANYAN, Sh. L. MNJOYAN

6-Aminopenicillanic acids (6-APA), has been subjected to acylation by some alyphatic dicarboxylic acid anhydrides and mixed anhydrides, and a series of new mono-, di- and esteropenicillins have been obtained.

ЛИТЕРАТУРА

1. Англ. пат. 885. 424, (1961) [С. А., 57, 3449 (1962)]. 2. Франц. пат. 1. 344. 029, (1963) [С. А. 80, 8037 (1964)].

3. А. Л. Мнджоян, М. Г. Цинкер, Э. С. Мкртчян, Ю. З. Тер-Захарян, Ш. Г. Оганян, Хнм. фарм. ж., 5, № 3, 5 (1970); 5, № 5, 15 (1970).

4. Англ. пат. 967. 890, (1964) РЖХ, 13Н367П (1966).

5. C. Alfred, W. Hoover, R. John, Пат. США 3.041.332 (1962); [С. А., 57, 15117 (1962)].

6. Англ. пат. 885. 425 (1961) [С. А. 57, 3449 (1962)]; Англ. пат. 967. 542 (1964) [РЖХ 15Н35ІП (1966)].

7. О. Л. Миджоян, Э. Р. Багдасарян, Изв. АН Арм. ССР, ХН, 15, 371 (1962); О. Л. Миджоян, С. А. Аветисян и другие, Арм. хим. ж., 19, 728 (1966).

D. H. Hey, J. Honeyman, D. H. Kohn, W. J. Peol, J. Chem. Soc., 1953, 2021; Kare Heinz Bolfze, Karlheiz Heidenblufh, Chem. Ber., 92, 982 (1959); Koji Oka, Vakugaku Zasshi, 81, 882 (1961). [C. A., 55, 24657c (1961)]; Tadashi Nakajinva, Ikuo Vamade, Koshi Matuda, Saci Suqa, Kana Zo-Wa-Dolga-ku Koga-Kubu Kiyo, 3, 494 (1965); [C. A., 63, 16169e (1965)].