XXIV, № 8, 1971

УДК 541.69+547.554

ПРОИЗВОДНЫЕ АРИЛАЛКИЛАМИНОВ

II*. СТРОЕНИЕ И ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ НЕКОТОРЫХ ЗАМЕЩЕННЫХ АРИЛАЛКИЛАМИНОВ И ИХ ПРОИЗВОДНЫХ

А. Л. МНДЖОЯН , Э. А. МАРКАРЯН, Р. А. АЛЕКСАНЯН, Г. А. ХОРЕНЯН, Р. С. БАЛАЯН и Ж. С. АРУСТАМЯН

> Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР (Ереван) Поступило 10 X 1969

Конденсвцией хлорангидридов замещенных фенилуксуюных, дифенилпропионовых и дифенилуксусной кислот IV с фенил- и феноксиизопропиламином получены соответствующие амиды V. Воостановлением алюмогидридом лития V превращены в замещенные арилалкиламины I. Циклизацией амидов по Бишлеру-Напиральскому с последующим восстановлением синтезированы производные тетрагидроизохинолина II.

Взаимодействием фенилизопропиламина с соответствующими инданонами получены аминопроизводные индана III. Гидрохлориды Г. II, III обладают коронарорасширяющими свойствами.

Рис. 1, табл. 4, библ. осылок 12.

Производные арилалкиламинов представлют значительный интерес для изыскания физиологически активных веществ [1,2], что обусловлено структурным сродством их с биогенными аминами, а также с рядом биологически активных веществ [3,4].

Продолжая исследование [1,2] связи между строением и коронарорасширяющим действием в ряду замещенных арилалкиламинов I, а также веществ, образующихся в результате их превращений по типу A и Б, мы оинтезировали соединения с общей структурой I, II, III.

* Сообщение 1 см. [2].

Конденсацией хлорангидридов кислот IV с фенил- или феноксиизопропиламином получены кристаллические амиды V, очищенные перекристаллизацией. Чистота амидов проверена хроматографией в тонком слое окиси алюминия. ИК спектры амидов обнаруживают полосы поглощения -C=O- амида при 1645 ± 5 и HN амида при 3300 ± 5 см $^{-1}$. Физико-химические константы амидов приведены в таблице 1.

Восстановлением алюмогидридом лития (АГЛ) в эфирном растворе амиды V превращены во вторичные амины I, охарактеризованные либо в виде оснований, либо лидрохлюридов (табл. 2).

Хлорпроизводные V (д, е) взаимодействием с морфолином переведены в V (е, и), которые затем восстановлены до соответствующих і (е, и). Взаимодействием I (е, и) с йодистым метилом и последующей обработкой основанием получены N-метилироизводные.

Конечные I хроматографированы на бумаге и в тонком слое окиси алюминия (см. экспериментальную часть). Некопорые физико-химические константы I приведены в таблице 2.

Для синтеза веществ строения II использованы амиды V, циклизованные по Бишлеру-Напиральскому в дигидроизохинолины VI. Восстановлением АГЛ в эфирном растворе VI превращены в 1-арил- и диарилалкил-3-метилтетрагидроизохинолины II; при циклизации необходима абсолютно сужая среда; в противном случае имеет место омыление амида с последующим замыжанием дифенилиропионовой кислоты в инданон VII (R=H).

$$V \longrightarrow \bigcap_{i \in H_2} CH_3 \longrightarrow II$$

$$CHX$$

$$CHX$$

$$CHX$$

$$VI$$

$$VI$$

$$VI$$

$$VII$$

$$R = H$$

m=0. $R^1=R^2=H$, $X=C_0H_5$; $R^1=OCH_3$, $R^2=H$, X=H; $R^1=R^2=OCH_3$, X=H; m=1. $R^1=R^2=H$, $X=C_0H_5$.

Смолоюбразные тетратидроизохинолины охарактеризованы в виде гидрохлоридов, перекристаллизованных из смеси спирт--эфир.

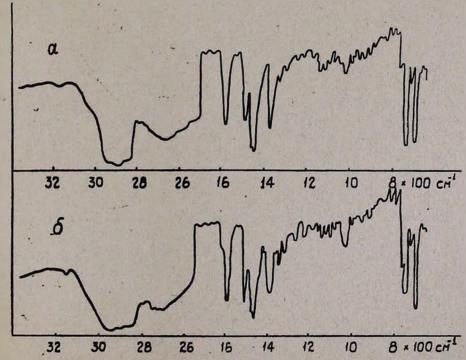


Рис. ИК спектры соединения II (m=1, X=C_eH₅, R¹=R²=H). а — с т. пл. 247°; 6 — с т. пл. 274°.

В случае II (m=1, $X=C_6H_5$, $R^1=R^2=H$) выделены два изомера с т. пл. 274° и 247°. Второй изомер получается при обработке продукта реакции разбавленной соляной кислотой. ИК спектры обоих изомеров идентичны (см. рис.) и характерны для производных изохинолина [5].

Индивидуальность производных тепрапидроизохинолинов проверена хроматопрафией (юм. экспериментальную часть).

Соединения строения III—производные структуры I, замкнутые по типу Б, синтезированы, исходя из соответствующих инданонов VIII. Инданоны получены по методу [6,7]. Конденсацией инданонов VIII с фенилизопропиламином выделены кетимины IX, восстановленные до соответствующих III. Вещества выделены и охарактеризованы в виде гидрохлоридов. Чистота продуктов проверена хроматографией в тонком слое окиси алюминия.

$$\begin{array}{c} R^{2} \\ R^{1} \\ \end{array} \begin{array}{c} X \\ + H_{2}NCH(CH_{3})CH_{2} \\ \end{array} \begin{array}{c} \longrightarrow \\ \longrightarrow \\ NCH(CH_{3})CH_{2}C_{e}H_{5} \\ \longrightarrow \\ IX \\ R^{1}=H, CH_{2}, OCH_{3} \\ \end{array} \begin{array}{c} R^{2}=H, X=C_{e}H_{5}. \end{array}$$

Все гидрохлориды испытаны на способность расширять коронарные сосуды по методу Моравица-Цана [7,8]. Результаты приводяться в таблице 4, из которой видно, что введение морфолинового гетероцикла приводит к полной утере коронарорасширяющих свойств. Сильно ослаблены коронарорасширяющие свойства структуры I/II. Производные же тетрагидроизохинолинов сохраняют высокоактивные свойства, присущие I.

Экспериментальная часть

ИК спектры сняты в вазелиновом масле на приборе UR-10 Хажакянсм.

4-Метоксифенил-, 3,4-диметоксифенил- и дифенилуксусная кислоты, соответствующие хлорангидридам IV (а, б, в), получены известными опособами [9, 10, 11].

Хлорангидрид 3-(3',4'-диметоксифенил)-3-фенилиропионовой кислоты (IVa) синтезирован по описанной нами методике [2].

Феноксиизопропиламин получен восстановлением оксима феноксиацетона избытком АГЛ в эфирном рактворе [12].

Получение амидов V. А) № 1—6, 8 (табл. 1). К раствору 0,1 моля хлорантидрида в 80 мл абсолютного бенэола прибавляют по каплям 0,1

R2	
Î	1
R'(CH(CH ₃) _n CONHCH(CH ₃)YC ₆ H ₅
/=	_/
V	

			1			%			Анализ, %							
ЭСДИ	x	Y	Rı	R ²	n		Т. пл.,	Молекулярная		1 a A z	енс		B 1	4110	лен	0
№ соеди- нения						Выход	•€	формула	С	н	N.	Cı	С	н	N	CI
1	C ₆ H ₅	сн,	осн,	осн,	1	61,2	169—170	C26H29NO3	77,45	6,92	3,71	_	77,12	7,19	3,43	
2	C ₆ H ₅	CH ₂	Н	Н	0	85,5	124—125	C ₂₃ H ₂₃ NO	83,97	7,29	4,32		83,85	7,05	4,25	
3	Н	CH ₂	OCH ₃	Н	0	95,8	111—113	C ₁₈ H ₂₁ NO ₂	76,51	7,63	4,91	_	76,29	7,46	4,93	
4	H ·	CH ₂	OCH ₃	OCH ₃	0	85,2	99—100	C ₁₉ H ₂₃ NO ₃	73,01	7,13	4,53		72,81	7,39	4,46	
5	C ₆ H ₅	OCH ₂	Н	Н	1	94,1	104-105	C24H25NO2	_		4,10	-	_		3,89	
6	CI	CH ₂	Н	H	0	83,2	83-85	C ₁₇ H ₁₈ NOC1	_	_	5,13	12,19	_		5,48	12,32
7	C4H8NO	CH ₂	Н	Н	0	83,5	141 -142	C21H26N2O2	_	_	8,47	_	_		8,28	-
8	CI	OCH ₃	Н	Н	0	95,3	81—82	C ₁₇ H ₁₈ NO ₂ C1	_	_	4,41	11,63	_	_	4,61	11,67
9	C4H8NO	осн,	Н	Н	0	85,3	114—115	C21H26N2O3	_		7,61	_			7,90	_
- 0				1	1								1			

моля амина и 0,11 моля пиридина, перемешивают при комнатной температуре в течение 0,5 часа, а затем нагревают на водяной бане в течение 3,5—4 часов. Охлаждают, фильтруют, промывают 3%-ным раствором соляной кислоты, 5%-ным раствором соды, растворитель отгоняют, а остаток перемристаллизовывают из бензола или смеси бензол-петролейный эфир (1:1).

Хроматографирование проводят в тонком слое окиси алюминия второй степени активности с подвижной фазой бензол-ацетон (4:1 или 8:1). Все амиды выявили одно пятно с R₁ в пределах 0,50—0,65. ИК

спектр: $HN = -3310 \pm 10$; $-C = N \ 1640 \pm 5 \ \text{см}^{-1}$. Остальные константы приведены в таблице 1.

Б) № 7, 9 (табл. 1). Нагревают раствор 0,1 моля хлорамида V (№ 6, 8) к 0,2 моля морфолина в абсолютном бензоле в течение 10—12 часов. Охлаждают, сущат над прокаленным сернокислым натрием и отгоняют растворитель. Перекристаллизовывают из омеси бензол—петролейный эфир (1:1).

Восстановление амидов. (№ 10—16). К раствору 0,2 моля АГЛ в 200—250 мл эфира прибавляют по каплям раствор или суспензию 0,1 моля амида в абсолютном эфире, кипятят с обратным колодильником в течение 6—8 часов. Охлаждают, разлагают 10 мл воды, фильтруют, осадок промывают эфиром (120 мл)! Эфирные растворы суштат сульфатом, растворитель отгоняют, остаток или перегоняют в вакууме, или, растворив в абсолютном эфире, осаждают гидрохлорид. Константы аминов приведены в таблице 2.

Получение N-метилпроизводных. Эфирный рактвор 0,1 моля амина I (№ 15, 16, табл. 2) обрабатывают 0,15 моля йодистого метила, оставляют на 2 суток при комнатной температуре. Растворитель и избыток йодистого метила удаляют, кристаллический остаток растворяют в воде и при охлаждении обрабатывают 10%-ным рактвором гидроокиси натрия. Выделившееся основание извитекают эфиром, сущат сульфатом, удаляют эфир и перепоняют в вакууме.

№ 17. N-[(2-Фенил-1-метил)этил]-N-[(2'-фенил-2'-морфолил)-этил]-метиламин. Выход 71,2°/0; т. кип. 226—280°/2 мм; d_4^{20} 1,0481; n_D^{20} 1,5958; MR_D найдено 113,2, вычислено 112,4. Найдено °/0: С 83,40; Н 8,25; N 3,98. С₂₅Н₂₉NO. Вычислено °/0: С 83,52; Н 8,13; N 3,89. Гидрохлорид—аморфное вещество, т. разм. 70°.

№ 18. N-[(2-Фенокси-1-метил)-этил] -N- [(2'-фенил-2'-морфолил)-этил]-N-метиламин. Выход 70,4 0 /₀; т. кип. 213—215 $^{\circ}$ /2 мм; d_{4}^{20} 1,0914; n_{D}^{20} 1,5654; MR_D найдено 105,8, вычислено 105,5. Найдено $^{\circ}$ /₀: С 74,62; Н 8,80; N 7,73. С₂₂Н₂₀N₂O₂: Вычислено $^{\circ}$ /₀: С 74,53; Н 8,53: N 7,90. Гидрохлорид разлагается при 75 $^{\circ}$.

Получение производных тетрагидроизохинолина II (№ 19—23) А) К раствору 0,025 моля амида V в 60 мл абколютного толуола прибавляют 6 мл хлорожиси фосфора и 2 г пятиожиси фосфора. Кипятят с об-

$$R^{2}$$

$$CH(CH_{3})_{n}NHCH(CH_{3})YC_{4}H_{5}\cdot HCI$$

	100					д, 9/о	17-2-		Анализ, ⁰ / ₀					
PE -	X	v	R1	Ra	п		Т. пл.,	Молекулярная	най	дено	вычислено			
№ соеди- нения	A	-19-30	, and the second			Выход	°C	формула	N	СІ	N	CI		
10	C _e H ₅	CH ₂	OCH ₃	осн,	1	62,0	120—121	C ₂₆ H ₃₁ O ₂ N·HCI	3,60	8,23	3,27	7,98		
11	C ₆ H ₅	CH ₂	Н	Н	0	63,4	198-200	C ₂₃ H ₂₅ N·HCI	3,75	11,10	3,78	10,38		
12	Н	CH,	OCH,	Н	0	52,1	163—164	C ₁₈ H ₂₃ NO·HCI	4,48	11,71	4.57	11,62		
13	Н	CH ₂	OCH ₃	OCH ₃	0	56,6	146—148	C ₁₉ H ₂₅ NO ₂ ·HCl	4,49	9,96	4,16	10,55		
14	C ₄ H ₈ NO	CH,	н	Н	0	74,4	98—100*	C21H28N2O	8,93		8,63	-		
15	C ₆ H ₅	осн,	н	Н	1	76,1	124—126**	Ca4Ha7NO·HCI	3,48	9,61	3,66	9,29		
16	C4H8ON	осн,	Н	Н	0	70,3	76-78***	C ₂₁ H ₂₈ N ₂ O ₂ ·HCI	7,81	9,29	7,43	9,48		

^{*} Приведены т. пл. и анализ основания; т. кип. 218-220°/2 мм; гидрохлорид разлагается при 81°.

^{**} Т. кнп. 235—7°/2 мм; d₄²⁰ 1,0641; n_D²⁰ 1,5771.

^{***} Приведена т. пл. основания; т. кип. 210-212°/2 мм, гидрохлорид разлагается при 73°.

Таблица 3

$$CH_3 H$$
 $-N$
 $(CH_3)_m CH(X)$
 $R' \cdot HC$

12	200	100	1		0%		4	Анализ, 0/0								
a X m R1		Rı	R ²	од, С	Т. пл., Молекулярная	Молекулярная	найдено				вычислено					
№ соеди- нения		"	ı.	ì	BMXO	°C	формула	С	Н	N	Cı	С	н	N	CI	
19	C ₆ H ₅	1	Н	H	72,3	274-6	C34H25N-HC1	79,29	7,24	3,80	9,85	79,40	6,89	3,86	9,76	
20	C ₆ H ₅	1	Н	Hi	63,5	245-7	C24H25N·HCI	_	9-	4,06	9,61	_	_	3,86	9,76	
21	C _s H ₅	0	H	Н	75,5	219-21	C ₂₃ H ₂₃ N·HCI	_	_	4,23	10,05	_	_	4,00	10,13	
22	Н	0	OCH ₃	Н	88,2	205—207	C18H21NO-HCI	_	_	4,50	11,72	-	_	4,61	11,66	
23	Н	0	OCH ₃	OCH ₃	77,4	148-50	C19H23NO2-HC1		_	4,58	10,98	_	_	4,19	10,62	

ратным холодильником 6 часов. Растворитель отгоняют, остаток растирают с эфиром, обрабатывают ледяной водой (15--20 мл), затем при охлаждении (5—6°) прибавляют аммиачную воду до щелочной реакции (рН 11-12) и извлекают эфиром. Сушат над безводным сульфатом, отгоняют растворитель и, прибавив к коричневому маслообразному остатку 30-40 мл абсолютного эфира, прикапывают к 60 мл эфирного раствора АГЛ, содержащего 1,4-1,6 г АГЛ. Перемешивают смесь при комнатной температуре 0,5 часа, затем при кипячении 3,5-4 часа. Разлагают образовавшийся комплекс водой, фильтруют, промывают эфиром и сушат над сернокислым натрием .Отогнав эфир, маслообразный остаток растворяют в 30 мл абсолютного эфира и осаждают гидрохлорид, перекристаллизовывающийся из смеси спирт-эфир (табл. 3).

Б) Для получения диастереоизомерной формы II (№ 20) эксперимент ведут так же, только после отгонки избытка хлорокиси фосфора, обрабатывают водой (15 мл), затем 6-8%-ной соляной кислотой (20 мл). Нагревают при 50-60° для растворения гидрохлорила дигилропроизводного, фильтруют, солянокислый раствор обрабатывают водным аммиаком до рН 14-42, извлемают выделившееся основание эфиром, оушат сульфатом, отогнав растворитель, маслообразный остаток растворяют в абсолютном эфире и восстанавливают как и в предыдущем экоперименте. Выделяют гидрохлорид, перекристаллизовывающийся из смеси спири-эфир.

Хроматопрафирование проводилось в тонком клое окиси алюминия с подвижной фазой хлороформ—ащетон (2:1). Пятна проявлямись йодом. в пределах 0,6-0,8. Бумажная хроматопрафия на бумате Ленинградской фабрики марки «с» в системе бутанол-уксусная кислота-вода (10:1:3) дает большие значения R_f в пределах 0,85±5. ИК опектры представлены на рисунке.

Получение производных дигидроиндана III. Спиртовый раствор 0,2 моля соответствующего инданона и 0,2 моля фенамина кипятят 4 чася. Отгоняют в важууме растворитель и непрореагировавший фенамин. Маслообразный остаток растворяют в эфире и осаждают гидрохлорид кетимина для отделения от исходного инданона. Гидрохлорид отделяют и, разложив 5%-ным раствором щелочи, основание восстанавливают в эфирном растворе 0,3 моля АГЛ. Вещество выделяют в виде гидрохлорида, перекриоталлизованного из спирта.

№ 24. Гидрохлорид 1-[N-(1'-метил-2'-фенил)-этиламино]-2-фенил дигидроиндана (III, $R^1 = R^2 = H$, $X = C_6 H_5$). Выход $50^9/_0$, т. пл. $207 - 208^\circ$. Найдено %: N 4,10; Cl 9,74. С24H25N·HCl. Вычислено %: N 3,84;

Cl 9,84.

№ 25. Гидрохлорид 1-[N-(1'-метил-2'-фенил)-этиламино]-2-фенил-6-метилдигидроиндана (III, R1=CH3, R2=CH3, X=C6H5). Выход 30%, т. пл. 101—102°. Найдено %: N 4,02; C1 9,61. С25H27N·HC1. Вычислено %: N 3,71; C1 9,48.

№ 26. Гидрохлорид 1-]N-(1'-метил-2'-фенил)-этиламино]-2-фенил--6-метоксидигидроиндана (III, $R^1 = H$, $R^2 = OCH_3$, $X = C_6H_3$). Выход $60^{\circ}/_{\circ}$,

т. пл. 247—248°. Найдено %: N 3,89; C1 9,46. С₂₅Н₂₇NO·HCl. Вычислено %: N 3,56; C1 9,06.

Таблица 4 Д:йствие гидрохлоридов на коронарные сосуды

№ соеди- нения	Доза, мг/кг	% расширения	Время,
10	0,5	50	45
11	0,5	20	30
12	1,0	60	60
13	0,5	50	60
14	1-3	не расширяет	_
15	0,5	50	60
16	1—3	не расширяет	1 =
17	1-3		_
18	1-3		-2
19	0,1	50	40
20	0,3	30	50
21	0,25	35—40	40
22	0,5	10	20
23	1,0	20	30
24	1,0	10	20
25	1,0	10	20
26	1,0	20	30
Harry St.	100	THE PERSON NAMED IN	

Вещества № 23—-26 хроматографированы в тонком слое окиси алюминия с подвижной фазой—хлороформ. Пятна проявлялись йодом, R_f 0,6 \pm 0,03.

ԱՐԻԼԱԼԿԻԼԱՄԻՆՆԵՐԻ ԱԾԱՆՑՑԱԼՆԵՐ

II. ՄԻ ՔԱՆԻ ՏԵՂԱԿԱԼՎԱԾ ԱՐԻԼԱԼԿԻԼԱՄԻՆՆԵՐԻ ՈՒ ՆՐԱՆՑ ԱԾԱՆՑՑԱԼՆԵՐԻ ԿԱՌՈՒՑՎԱԾՔԸ ԵՎ ՖԻՋԻՈՐՔՍԱԿԱՆ ԱԶԳՑՈՒԹՍԻԱՆԸ

T. L. UTRABUT . E. U. UUPAUPBUL, A. U. ULBRUULBUL, A. Z. MAPPERBUL, A. U. URAPPUBUUBUL

U. d. h n h n ı d

Ֆենիլ-և ֆենօքսիիզոպրոպիլամինի Հետ տեղակալված ֆենիլքացախա-Երթվի, դիֆենփլպրոպիոնաթխվի և դիֆենփլքացախաթթվի (IV) քլորանհիդրիդների կոնդենսումը տալիս է համապատասխան ամիդներ (V)։ Վերջիններս լի-Թիումի ալյումինահիդրիդով վերականգնելով փոխարկվում են տեղակալված արիլարկիլամինների (I)։ Բիչչեր-Նապիրալսկու եղանակավ ամիդների օղակավորումով և ապա վերականգնումով սինթեզված են տետրահիդրոիզոքինոլինի ածանցյալներ (II)։ Ֆևնիլիզոպրոպիլաժինի և Համապատասխան ինղանոնների փոխազդմամբ ստացված են ինդանի ամինաածանցյալներ (III)։

I, II, III միացությունների քլորհիդրատներն օժտված են պսակաձև անոթները լայնացնող հատկություններով։

ЛИТЕРАТУРА

- 1. А. Л. Миджоян, Э. А. Маркарян, Авт. свид. 203694, 10 VIII 1966, бюлл. № 21.
- 2. А. Л. Миджоян, Э. А. Маркарян, А. В. Казарян, Арм. хим. ж., 22, 325 (1969).
- 3. М. Д. Машковский, «Лекарственные средства». Изд. «Медицина», Москва, 1, 1967, 233.
- М. Д. Машковский, «Лекарственные средства», «Изд. «Медицина», Москва, 1, 1967, 381.
- 5. А. Л. Миджоян, Э. А. Маркарян, Л. П. Соломина, С. С. Василян, ХГС, 1989, 827.
- 6. P. Pfelffer, U. U. Roos, J. pr. Chem., 159, 13 (1941).
- 7. B. B. Corson, J. Org. Chem., 19, 17 (1954).
- 8. Н. А. Каверина, Фармакология и токсикология, 21, 39 (1958).
- 9. J. C. Cain, J. L. Simonsen, C. Smith, J. Chem. Soc., 103, 1037 (1913).
- S. R. Shepard, H. D. Porter, J. F. Hoth, C. K. Simane, J. Org. Chem., 17, 568 (1952).
- 11. «Синтезы орг. преп»., Сб. 1,Изд. ИЛ, Москва, 1949, стр. 266.
- А. Л. Миджоян, Р. Л. Оганесян, Т. Р. Акопян, Л. Г. Хачатрян, Арм. хим. ж., 6. 528 (1970).