2 Ц 3 Ч Ц Ч Ц Ъ Р Г Г Г Ц Ч Ц Б Ц Г Г Ц Ч Г Г АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXIII, № 3, 1970

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542 921 + 547.333.4

ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

LXVIII. ЩЕЛОЧНОЕ РАСЩЕПЛЕНИЕ ЧЕТВЕРТИЧНЫХ АММОНИЕВЫХ СОЛЕЙ, СОДЕРЖАЩИХ 1-АЛКОКСИ-2-БРОМЭТИЛЬНУЮ ГРУППУ

Р. Б. МИНАСЯН, М. Г. ИНДЖИКЯН Н А. Т. БАБАЯН

Институт органической химин АН Армянской ССР Поступило 23 VI 1969

Четвертичные аммониевые соли, содержащие наряду с группой аллильного типа 1-бутокси-2-бромэтильную группу, подвергаются реакции перегруппировки-расщепления с образованием в качестве безазотистых продуктов, исключительно сложных эфиров ненасышенных карбоновых кислот. Установлена возможность нуклеофильного замещения или гидратации α -алкоксивинильной группы в четвертичных аммониевых солях в водношелочной среде.

Табл. 1, библ. ссылок 5.

Рянее нами было показано, что четвертичные аммониевые соли, содержащие наряду с группой аллильного типа 1-этокси-2-бромэтильную группу, под действием водной щелочи подвергаются сначала дегидробромированию, а затем реакции перегруппировки-расщепления с образованием сложных эфиров или продуктов их гидролиза — свободных кислот [1].

В настоящей работе установлено, что замена этоксильной группы на бутоксильную полностью подавляет щелочной гидролиз, приводя к образованию исключительно сложных эфиров ненасыщенных карбоновых кислот. Так, при воднощелочном расщеплении бромистого диметилаллил(1-бутокси-2-бромэтил)аммония (I) в качестве единственного безазотистого продукта реакции перегруппировки-расщепления был получен бутиловый эфир бутен-3-карбоновой кислоты (64%).

Аналогично, взаимодействие со щелочью бромистых солей диметилметаллил(1-бутокси-2-бромэтил)- и диметил- α -метилкротил(1-бутокси-2-бромэтил)аммония привело к образованию бутиловых эфиров 3-метилбутен-3-карбоновой (59%) и 2-метилпентен-3-карбоновой (63%) кислот:

$$(CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH - CX = CH - R)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_2)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_2)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto}}{\mapsto} (CH_3)_2 \stackrel{\stackrel{\circ}{\mapsto} (CH_3$$

Следует отметить, что во всех случаях наряду с реакцией перегруппировки-расщепления имело место образование бутилацетата и соответствующего третичного амина.

Для образования бутилацетата из солей !— III теоретически возможны следующие пути:

$$(CH_3)_3$$
N $CH-C=C OH$ $CH_3)_3$ N $CH-C=C C=CH_3$ OC_4H_6 OC_4H_6

Для выяснения пути образования бутилацетата нами подвергнута воднощелочному расщеплению триметиламмониевая соль IV; при этом продукты расщепления не были обработаны кислотой. Безазотистыми продуктами реакции оказались бутилацетат $(64^{\circ}/_{o})$ и уксусная кислота $(9^{\circ}/_{o})$:

$$(CH_3)_3$$
 $\overset{+}{N}$ CH (OC_4H_9) CH $_2$ $\overset{-}{B}$ г $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{N}$ -C=CH $_3$ $\overset{-}{\longrightarrow}$ $(CH_3)_3$ $\overset{+}{\longrightarrow}$ $(C$

В продуктах не удалось обнаружить и следов бутоксиацетилена. Специально поставленным опытом показано, что бутоксиацетилен не превращается полностью в бутилацетат в условиях воднощелочного расщепления. Таким образом, путь (в) отпадает и остается предположить, что бутилацетат образуется либо в результате нуклеофильного замещения (а), либо в результате гидратации (б).

Исходные соединения	Ионный галоид, ⁰ / ₀ (N, ⁰ / ₀)		Продукты расщепления			
	най- дено	вычис- лено				
CH ₂ CH=CH ₂ CH-CH ₂ Br OC ₄ H ₉ I	24,05 (4,52)	23,19 (4,05)	(CH ₃) ₂ NH (CH ₃) ₂ NCH ₂ CH=CH ₃ CH ₃ COOC ₄ H ₉ CH ₂ =CHCH ₂ CH ₃ COOC ₄ H ₉			
$(CH_3)_3N$ $CH_2C(CH_3)=CH_3$ E CH_2CH_3Br CH_3CH_3 CH_3	22,83 (4,43)	22,16 (3,87)	(CH ₃) ₃ NH (CH ₃) ₂ NCH ₃ C(CH ₃)=CH ₃ CH ₃ COOC ₄ H ₉ CH ₂ =C(CH ₃)CH ₂ CH ₂ COOC ₄ H ₉			
CH ₃) ₂ N CH(CH ₃)CH=CHCH ₃ CH—CH ₂ Br OC ₄ H ₉ III		•	(CH ₃) ₂ NH (CH ₃) ₂ NCH(CH ₃)CH=CHCH ₃ CH ₃ COOC ₄ H ₉ CH ₃ CH=CHCH(CH ₃)CH ₃ COOC ₄ H ₉			
(CH ₃) ₃ NCH—CH ₂ Br Br OC ₄ H ₉ IV	25,50 (4,65)	25,08 (4,38)	(CH ₃) ₃ N CH ₂ COOC ₄ H ₉ CH ₃ COOH			
(CH ₃) ₃ [†] CH−CH ₃ CI CI OC ₄ H ₉ V	16,31 (6,68)	15,43 (6,08)	(CH ₃) ₃ N CH ₃ COOC ₄ H ₉ CH ₃ COOH			
(CH ₃) ₃ NCH-CH ₂ Br Br OC ₃ H ₅ VI	(5,13)	(4,81)	(CH ₂) ₃ N (CH ₃) ₂ NH CH ₃ COOH			

Сходные результаты были получены и при расщеплении соли V:

Расщепление же соли VI привело к образованию триметиламина $(52^{\circ}/_{\circ})$, диметиламина $(6^{\circ}/_{\circ})$ и уксусной кислоты $(50^{\circ}/_{\circ})$.

Результаты расщепления всех изученных солей приведены в таблице.

Отметим, что расщепление гидроокиси триметил(1-этоксивинил) аммония исследовалось Аренсом с сотрудниками [2]. По утверждению авторов, в результате реакции ими были получены триметиламин, гид-

Таблица

Buxoa, %	Т. кип., °С/мм	Молекулярная формула	d ₄ ²⁰	1	Анализ. 0/0				6
				n ²⁰	С		Н		образ. эн/ солн
					найдено	вычис-	найдено	BAYNC-	Колич. образ Вг. 2-нон/ 2-моль соли
71,8 5,2 6,0	115—117/680	C.H ₁₂ O	0.0010	1,4001		30.00		10.05	0,87
63,6 73,8 17,9	75-77/15	C ₉ H ₁₄ O ₂	0,8818	1,4248	68,95	69,23	10,31	10,25	ı.
15,4 58,8 54,0	115—117/680 90—92/15	C ₁₀ H ₁₂ O ₂ C ₁₀ H ₁₂ O ₂	0,8811	1,4001 1,4381	70,65	70,58	10,01	10,58	100
28,6 59,7	113—114/680 115—117/680 87—89/10	C ₆ H ₁₂ O ₂ C ₁₁ H ₂₀ O ₂	0,8985	1,4001 1,4390	70,68	71,13	10,79	10.86	0,91!
76,3 76,7 9,2	115—117/680	C ₆ H ₁₂ O ₂	-	1,4001			- T-		0,98
90,5 76,7 7,7									1
58,8 6,5 50,0									0,97

роокись тетраметиламмония, этилацетат, диметиламин и этоксиацетилен. Однако в экспериментальной части упоминаются только два последних продукта, количественные данные о которых не приводятся.

Экспериментальная часть

Четвертичные соли получены медленным прикапыванием третичного амина (в случае солей I—III) или эфирного раствора триметиламина (в случае солей IV—VI) к охлаждаемому до —10° раствору 1-бутокси-1,2-дибромэтана [3] в сухом эфире (на 0,1 моля компонентов бралось 30 мл абс. эфира). Температуры плавления солей из-за ихгигроскопичности определить не удалось.

Соль III получить в чистом виде не удалось. Она получается в виде смеси с бромгидратом. Количество соли в смеси установлено на основании данных анализа. Полученная смесь непосредственно вводилась в реакцию расщепления. Выходы продуктов расщепления в таблице рассчитаны на чистую соль.

Диметилаллил- и диметилметаллиламины [4, 5] получены по про-

писям

Общее описание реакции щелочного расшепления. Смесь испытуемой соли с 3-кратным мольным количеством водного раствора едкого кали оставлялась на ночь в колбе с нисходящим холодильником, соединенным с приемником и склянкой Тищенко, содержащими титрованный раствор соляной кислоты. Затем титрованием амина определялся процент расщепления и в случае необходимости смесь нагревалась на кипящей водяной бане. Остаток в реакционной колбе экстрагировался эфиром, эфирный экстракт прибавлялся к содержимому приемника, эфирный слой отделялся. Перегонкой эфирного слоя выделялись получающиеся в реакции сложные эфиры.

Бутилацетат идентифицирован с помощью газо-жидкостной хроматографии (сравнение с известным образцом), ненасыщенные сложные эфиры— с помощью данных ИК спектров, свидетельствующих о наличии незамещенной винильной группы и сложноэфирной группировки (920, 995, 1120, 1140, 1160—1185, 1250, 1640, 1730, 3080 см-1).

Обратным титрованием солянокислых растворов определялось общее количество отщепившегося амина. Подщелочением, экстрагированием эфиром и перегонкой извлекались свободные амины, которые идентифицировались по отсутствию депрессии температур плавления про5 смешения с известными образцами. В опытах расщепления солей I и IV—VI разделение вторичного и третичного аминов проводилось по [1]. В остатке в реакционной колбе титрованием определялось общее количество ионного галоида. Подкислением и экстрагированием эфиром извлехались карбоновые кислоты.

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄՈՆԻՈՒՄԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

LXVIII. 1–ԱԼԿՕՔՍԻ–2–ԲՐՈՄԷԹԻԼ ԽՈՒՄԲ ՊԱՐՈՒՆԱԿՈՂ ՉՈՐՐՈՐԴԱՑԻՆ ԱՄՈՆԻՈՒՄԱՑԻՆ ԱՂԵՐԻ ՀԻՄՆԱՑԻՆ ՃԵՂՔՈՒՄԸ

A. P. UPLUBUL, U. Z. PLZPABUL & U. P. PUPUBUL

Udhnhnid

Նախկինում ցույց էր տրված, որ ալն չորրորդալին ամոնիումալին աղհրը, .որոնք ալիլալին տիպի խմբի հետ մեկտեղ պարունակում են նաև 1-էթօքսի-2-բրոմէթիլ խումբ, ջրային հիմքի հետ փոխազդելիս ենթարկվում են վերալամբավորման-ճեղջման ռեակցիալի, առաջացնելով էսթերներ կամ համապաատսխան կարբոճաթթուներ։ րելով բացառապես չհագեցած կարգոնաննում է հիմնալին հիդրոլիզը, բե֊-Նումը բուտօքսի խմեռվ լրիվ կերպով կասեցնում է հիմնալին չիդրոլիզը, բե֊-

8ույց է տրված նաև, որ [—][] աղերի ջրա-հիմնային ճեղջման ժամանակ վերախմբավորման-ճեղջման ռեակցիայի հետ մեկտեղ տեղի է ունենում նուկլեոֆիլ տեղակալման (կամ հիդրատացման) ռեակցիա։

Ստացված արդլունքները բերված են աղլուսակում։

ЛИТЕРАТУРА

- 1. М. Г. Инджикян, Р. Б. Минасян, А. Т. Бабаян, Изв. АН АрмССР, ХН, 18, 572- (1965),
- 2. J. F. Arens, J. G. Bouman, D. H. Koerts, Rec. trav. chim., 74, 1040 (1955).
- 3. J. F. Arens, Rec. trav. chim., 74, 273 (1955).
- 4. А. Т. Бабаян, Г. Т. Мартиросян, Д. В. Григорян, Э. А. Григорян, Изв. АН-АрмССР, XH, 16, 449 (1963).
- 5. А. Т. Бабаян, Э. О. Чухаджян, К. А. Рашмаджян, ЖОрХ, 3, 432 (1967).

er or government of the second and t