XXI, № 10, 1968

УДК 542.91+632.95-1

СИНТЕЗ ГЕРБИЦИДОВ

ЭТИЛОВЫЕ ЭФИРЫ О-α-N-АЦЕТИЛАМИНО-β,β,β-ТРИХЛОРЭТИЛ-ГЛИКОЛЕВЫХ КИСЛОТ

в. в. довлатян и к. а. элиазян

В качестве возможных гербицидов группы О-замещенных производных гликолевой кислоты синтезированы этиловые эфиры О- α -N-ацетиламино- β , β , β -трихлор-этилгликолевых кислот. Синтез этих соединений осуществлен цианметилированием полученных ранее α , β , β -тетрахлорэтиламидов карбоновых кислот с последующим превращением полученных О- α -N-ациламино- β , β , β -трихлорэтоксивцетонитрилов в намеченные продукты. Строение последних доказано встречным синтезом.

Из числа полученных соединений в качестве гербицида определенный интерес представляет О-α-N-вцетиламино-β,β,β-трихлорэтоксиацетонитрил, который подавляет

рост злаков и практически не влияет на развитие бобов.

Высокая гербицидная активность препаратов типа 2,4-Д, фактически являющихся О-галоидарилгликолевыми кислотами, указывает на то, что О-замещенные производные гликолевой кислоты могут представить определенный интерес, в качестве средств борьбы с сорной растительностью.

С учетом этого и с целью получения гербицидных препаратов повышенной активности, нами ранее были получены этиловые эфиры О-арилоксиацетилгликолевых кислот, из которых этиловый эфир О-2,4-дихлорфеноксиацетилгликолевой кислоты (препарат 50) нашел практическое применение в борьбе с двудольными сорняками в посевах зерновых культур [1].

В настоящей статье описываются синтез и результаты предварительных испытаний этиловых эфиров О-α-N-ацетиламино-β,β,β-три-хлорэтилгликолевых кислот общей формулы:

CCI3CH(NHOCR)OCH2COOC2H5.

R=CH₃, CCl₃.

В качестве исходных продуктов для синтеза необходимых эфиров, были взяты а, β, β, β-тетрахлорэтиламиды карбоновых кислот. Было установлено, что указанные хлориды под действием смеси формальдегида и цианистого натрия, подобно хлорангидридам кислот, образуют ожидаемые нитрилы. Последние под действием этилового спирта и хлористого водорода легко переходят в соответствующие хлористоводородные соли иминоэфиров, которые затем, разлагаясь водой, двют этиловые эфиры О-α-N-ацетиламино-β, β, β-трихлорэтилгликолевых кислот:

Строение полученных соединений было доказано их встречным синтезом—взаимодействием исходных хлоридов с этилгликолятом в присутствии пиридина:

$$\begin{array}{ccc} \text{CCI}_3\text{CH(NHOCR)CI} & \xrightarrow{& \text{HoCH}_3\text{COOC}_2\text{H}_3 \\ & & \text{COOC}_2\text{H}_5 \\ \end{array} \\ \begin{array}{c} \text{COOC}_2\text{H}_5 \end{array}$$

Физиологическая активность этих соединений изучалась на фоне ранее синтезированных гербицидов — α -окси- β , β , β -трихлорэтиламидов уксусной и трихлоруксусной кислот.

По предварительным данным наиболее высокую гербицидную активность проявляют промежуточные $O-\alpha-N$ -ацетиламино- β,β,β -три-хлорэтилгликолонитрилы.

Особенно нужно отметить О- α -N-ацетиламино- β , β , β -трихлорэтилгликолонитрил, который по сравнению с этиловым эфиром О- α -N-трихлорацетиламино- β , β , β -трихлорэтилгликолевой кислоты содержит на одну ССІ₃СО токсофорную группу меньше, но в дозах 6 и 12 мг/кг воздушно-сухой почвы полностью уничтожает пшеницу и овсюг. Доза 3 мг/кг препарата также оказала фототоксическое действие: при этом накопление зеленой массы пшеницы было подавлено на 60, овсюга — на 50 и кукурузы — на 77,3%.

Эти предварительные данные были подтверждены новым опытом, где гербицидная активность О- α -N-ацетиламино- β , β , β -трихлорэтилгликолонитрила изучалась на фоне α -окси- β , β , β -трихлорэтилацетамида. Выяснилось, что О- α -N-ацетиламино- β , β , β -трихлорэтилгликолонитрил по гербицидной активности превосходит α -окси- β , β , β -трихлорэтилацетамид (см. табл.).

- Данные таблицы свидетельствуют также, что О- α -N-ацетиламино- β , β , β -трихлорэтилгликолонитрил, в отличие от α -окси- β , β , β -трихлорацетамида, практически не влияет на рост и развитие гороха, следовательно, в перспективе он может быть применен в качестве противозлакового гербицида в посевах бобовых.

Таблица Действие О- α -N-ацетиламино- β , β , β -трихлорэтилгликолонитрила и α -окси- β , β , β -трихлорацетамида на растения

Соединения	Доза препарата, мг/кг	Кукуруза	Горох	Пшеница	Овсюг
Контроль	-	100	100	100	100
CH3CONHCHCCI3 OCH3CN	3 6 12	52,5 30,0 5,0	102,8 108,3 97,2	=	35,5 16,0 —
CH3CONHCH(OH)CCI3	3 6 12	65,0 45,0 37,5	77,7 61,1 75,0	42,3 23,5 —	34,2 31,6 23,7

Экспериментальная часть

О-2-N -Ацетилимино - β , β , β -трихлорэтилгликолонитрил. В минимальном количестве воды растворяют 3,2 г (0,065 моля) цианистого натрия и при охлаждении ледяной водой по каплям приливают 5,1 г (0,068 моля) 40° /0-ного формалина. Продолжая перемешивание и охлаждение, маленькими порциями добавляют 13,5 г (0,060 моля) α , β , β , β -тетрахлорэтилацетамида, перемешивают еще час и отсасывают продукт реакции. Выход 12,4 г (86,77°/0), т. пл. 116—118°. Найдено $^{\circ}$ /0: N 11,56. $C_{0}H_{7}O_{2}N_{2}CI_{3}$. Вычислено $^{\circ}$ /0: N 11,40.

Аналогичным путем получен О- α -N-трихлорациламино- β , β , β -трихлорэтилгликолонитрил. Выход $81,6^{\circ}/_{\circ}$ теории, т. пл. $72-73^{\circ}$. Най-

дено %: N 7,90. С_вH₄O₂N₂Cl₆. Вычислено %: N 8,00.

Солянокислая соль О-а- N-ацетиламино- β , β , β -трихлорэток-сиацетиламиноэтилового эфира. Через смесь 7,0 г (0,028 моля) О-а-N-ацетиламино- β , β , β -трихлорэтилгликолонитрила с 25 мл абсолютного эфира и 1,5 г (0,032 моля) абсолютного этилового спирта, при охлаждении льдом и солью, пропускают сухой ток хлористого водорода до насыщения и смесь оставляют на ночь. На следующий день продукт реакции отфильтровывают и несколько раз промывают абсолютным эфиром. Выход 7,3 г (71,4%), т. разл. 99—101°.

Аналогичным путем получают солянокислую соль О- α -N-трихлорацетиламино- β , β , β -трихлорэтоксииминоэтилового эфира. Выход

77,7%, т. разл. 102—104°.

Этиловый эфир О- α -N- α иетиламино- β , β , β -трихлорэтилгли-колевой кислоты. 11,0 г (0,033 моля) солянокислой соли О- α -N-ацетиламино- β , β , β -трихлорэтоксиацетиминоэтилового эфира перемешивают с 15 мл воды и оставляют при комнатной температуре в течение 2 часов. Выпадает белый осадок этилового эфира О- α -N-ацетиламино- β , β , β -трихлорэтилгликолевой кислоты, который отфильтровывают. Выход 7 г (71,4°/ $_0$), т. пл. 72—74°. Найдено °/ $_0$: N 5,00. $C_8H_{12}O_4NCl_3$. Вычислено °/ $_0$: N 4,82.

Аналогичным путем получен этиловый эфир О- α -N-трихлор-ацетиламино- β , β , β -трихлорэтилгликолевой кислоты. Выход 91, 7° /₀, т. пл. 59—61°. Найдено $^{\circ}$ /₀: N 4,04. С₈H₉O₄NCl₈. Вычислено $^{\circ}$ /₀: N 3,73°/₀.

Армянский сельскохозяйственный институт

Поступило 8 VI 1967

ՀԵՐԲԻՑԻԴՆԵՐԻ ՍԻՆԹԵՉ

O-a-N-Ա8ԵՑԻԼԱՄԻՆԱ-5,8,5-ՏՐԻՔԼՈՐԷԹԻԼԳԼԻԿՈԼԱԹԹՈՒՆԵՐԻ ԷԹԻԼԷՍԹԵՐՆԵՐ Վ. Վ. ԳՈՎԼԱԹՑԱՆ ԵՎ Կ. Ա. ԷԼԻԱԶՑԱՆ

Udhahnid

Գլիկոլաթթվի Օ-տեղակալված ածանցլալների շարջից սինթեզվել են

գլիկոլաթթունսիի էթիլեսթերներ։ Սինթեղն իրականացվել է նախապես ստացված կարրոնական թթուների 2,3,3,3-տետրաքլորէթիլամիդների ցիան-մեթիլման ձանապարհով ստացված 0-2-N-ացետիլամինա-3,3,3-տրիքլոր-գիիլգլիկոլանիստրիլները վերը նշված միացությունների փոխարկելով, Վեր-ջիններիս կառուցվածքը հաստատված է հանդիպակած սինթեցով։

Ստացված միացուԹլուններից որպես հերբիցիդ որոշակի հետաքրքրու⊸ Թլուն է ներկալացնում Օ-2-N-ացետիլամինա-3,β,β-տրիքլորէԹիլգլիկոլանիտրիլը, որը ճնշում է հացազգիների աճը և գործնականորեն չի ազդում

լորազգիների վրա,

ЛИТЕРАТУРА

1. В. В. Довлатян, Т. О. Чакрян, Авторское свидетельство № 755023/23—4, от 11/XII—1961 г.; Авторское свидетельство № 755029/28—4 от 13/VI—1962 г.; Изв. АН АрмССР, XH, 16, 475 (1963).