XIX, № 5, 1966

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.127+541.128

О каталитической активности купро- и купри-ионов в отношении реакции оксалата натрия с персульфатом калия

А. Н. Мамян

Степень каталитической активности Cu^+ -иона в отношении реакции $K_2S_2O_8+$ + $Na_2C_2O_4$ значительно выше, чем Cu^{++} -иона, т.е. в ряду Cu^+ , Cu^{++} , Ag^+ , Hg^{++} самым активным катализатором является Cu^+ -ион.

Увеличение жонцентрации CuSO₄ и при 50 + 0,1°C вызывает увеличение ско-

рости реакции.

Суммарный порядок реакции окисления, катализированной $[Cu_2J_2] = 1.05 - 10^{-8}$ моль/л и катализированной $[CuSO_4] = 1.05 \cdot 10^{-5}$; $1.05 \cdot 10^{-4}$ моль/л является первым. Среднее значение констант скоростей соответственно: 6.42×10^{-3} ; 2.8×10^{-3} ; 10.4×10^{-3} мин⁻¹.

По наблюдениям Аллена [1], Сривастава и Гхош [2], наибольшей степенью каталитической активности в отношении реакции персульфата калия с оксалатом натрия в ряду Си⁺⁺, Ag⁺, Hg⁺⁺-ионов обладает Си⁺⁺-ион, тогда как по Бауну и Мерджерисону [3], для реакции ионо-радикального распада персульфата Ag⁺-ион более активный катализатор, чем Си⁺⁺-ион. Следовательно, каталитическое действие ионов переменной валентности на рассматриваемую реакцию не следует представлять только как катализ ионо-радикального распада ионов реагентов. Существенную роль играют процессы комплексообразования иона металла переменной валентности с ионом-реагентом.

Допуская возможность некоторого различия в механизме каталитического действия Cu^+ и Cu^{++} -ионов на ту же реакцию, считаем, что выяснение степени каталитической активности Cu^+ -иона пред-

ставляет определенный интерес.

Проведенное нами совместно с Чалтыкяном и Мовсесяном [4] исследование привело к констатации четко выраженного каталитического действия Cu_2J_2 на реакцию $K_2S_2O_8 + Na_2C_2O_4$ при $t = 50 \pm 0,1^\circ$ и при концентрации катализатора, равной $1,05 \times 10^{-6}$ моль/л; исходная концентрация реагентов: $[K_2S_2O_8]_0 = [Na_2C_2O_4]_0 = 0,004$ моль/л. Однако, поскольку вследствие окисления Cu^+ кислородом воздуха и процесса дисмутации [5] в обычных условиях невозможно иметь

только Cu^+ -ноны, то мы фактически констатировали суммарный каталитический эффект Cu^{++} и Cu^+ -нонов.

Для выяснения в наблюдаемом каталитическом эффекте роли каждого из ионов в отдельности необходимо исключить из системы один из них. Поскольку исключение Cu^{++} -иона из раствора Cu^{+} -иона невозможно, то мы пошли по пути исключения из системы Cu^{+} -иона, то есть сочли необходимым исследовать каталитическое действие олного только Cu^{++} -иона (в виде соли $\mathrm{CuSO_4}$) на ту же реакцию в условиях, совершенно аналогичных исследованному каталитическому действию $\mathrm{Cu_2J_2}$.

Сравнение полученных данных должно дать критерий степени каталитической активности Cu⁺ и Cu⁺⁺-ионов.

Для проверки возможного каталитического действия J'-иона нами исследована кинетика той же реакции при каталитическом действии KJ той же концентрации $(1,05 \times 10^{-6} \text{ моль}/л)$, что н $CuSO_4$.

Описание опытов

Реагенты: персульфат калия очищен перекристаллизацией до содержания 99,48%, оксалат натрия — препарат Кальбаума ч.д.а., медный купорос — препарат Кальбаума х.ч.

Исходные концентрации реагентов: $[K_2S_2O_8]_0 = [Na_2C_2O_4]_0 = 0,004$ моль/л. Температура опыта: $50^\circ \pm 0,1^\circ$ C.

Метод анализа Сривастава—Гхош [2] — титрация на холоду оксалат-иона 0,005 н раствором перманганата калия. Для ускорения анализа к 10 мл пробы добавляли 0,3 мл насыщенного раствора сульфата марганца. К пробе добавляли также 1 мл разведенной (1:8) серной кислоты. Титрование производили микробюреткой.

Растворы реагентов $[K_2S_2O_8] = [Na_2C_2O_4] = 0,008$ моль/л, по 100 мл каждый, приготовлялись на растворе $CuSO_4$ концентрации $1,05\times10^{-6}$ моль/л. Раствор катализатора готовился путем растворения навески в бидистиллате, прокипяченном в течение двух часов, с целью десорбции кислорода. Титрующий раствор перманганата, вследствие нестойкости разведенных растворов перманганата калия, приготовлялся двадцатикратным разведением 0,1 н раствора его непосредственно перед опытом. Кинетика реакции исследована при следующих трех значениях концентрации катализатора $CuSO_4:1,05\cdot10^{-6}$; $1,05\cdot10^{-6}$ и $1,05\cdot10^{-4}$ моль/л.

Результаты опытов

Сопоставление результатов данного исследования с результатами предыдущей нашей работы каталитического окисления при катализаторе Cu₂J₂ [4] приведено на рисунке 1.

Воспроизводимость полученных данных показана в таблице.

Полученные данные удовлетворяют кинетическому уравнению первого порядка.

Средние значения констант скоростей при $[CuSO_4] = 1.05 \cdot 10^{-3}$ и $[CuSO_4] = 1.05 \cdot 10^{-4}$ моль/л соответственно равны: $1.81 \cdot 10^{-3}$ и

 $10,4\cdot 10^{-3}$ мин $^{-1}$, тогда как при катализе [Cu₂J₃] = $1,05\cdot 10^{-6}$ — константа скорости $6,42\cdot 10^{-3}$ мин $^{-1}$.

Обсуждение результатов

Рассмотрение кривой окисления катализированного [CuSO₄] = $1,05 \cdot 10^{-6}$ моль/л (рис. 1, кривая 1) приводит к заключению, что в условиях опыта каталитический эффект CuSO₄ проявляется весьма слабо, кривая аналогична кривой, характерной для некатализированного окисления. Сравнение с кривой катализированного [Cu₂J₂] = $1,05 \cdot 10^{-6}$ моль/л окисления (рис. 1, кривая 3) четко указывает на то, что Cu₂J₂ является значительно более активным катализатором.

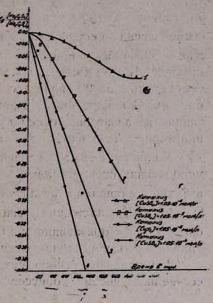


Рис. 1. Различные условня окисления C_2O_4 -иона S_2O_8 -ионом.

Учитывая наблюдавшийся Алленом [1] четко выражевный каталитический эффект [CuSO₄] = $1\cdot 10^{-7}$ моль/ Λ при тех же исходных

Таблица

73.	Расход титрующего раствора 0,005 н КМпО₄ в мл за равн. пром. врем.					
минутах	изиро- окисление	Катализированное окисление				
		Катализатор CuSO₄ Катализатор CuSO₄			Катализатор ҚЈ	
Время в	Некатализиро- ванное окисле	$[Cu_2J_2] = 1.05 \cdot 10^{-6}$ моль/л	[CuSO ₄] = = 1,05·10 ⁻⁶ моль/я	[CuSO ₄] — = 1,05·10 ⁻⁵ моль/л	[CuSO ₄] = = 1,05·10 ⁻⁴ моль/л	[KJ] = 1,05·10 ⁻⁶ моль/л
120	1,36	8,2	1,53	3,82	10,00	0,84
120	1,46	8,2	1,72	4,10	9,74	0,90
120	2,12	8,1	1,43	3,68	13,28	0,84
Средние значения		8,17	1,56	3,87	10,65	0,86

концентрациях реагентов, но при t=69,7°C полагаем, что отсутствие (почти полное) каталитического эффекта того же катализатора при увеличении его концентрации приблизительно в 10 раз ([CuSO₄] = $= 1,06 \cdot 10^{-6}$ моль/л) при одновременном понижении температуры до 50° говорит о том, что источником иод-радикалов является термический распад персульфата калия: $S_2O_8 \rightarrow 2SO_4^+$ [6] и, что взаимодействие S₂O₈-иона и иона—Си⁺⁺, практически связанного в оксалатный комплекс [7], не может быть стадией, инициирующей цепь. Понижение температуры на 20° является более сильным отрицательным фактором, чем положительный эффект десятикратного повышения концентрации катализатора, поскольку наблюденный суммарный эффект отрицателен. Тот факт, что каталитический эффект [Си. J.] = 1,05. $\cdot 10^{-6}$ моль/ Λ в тех же условиях четко проявляется и что образование купрооксалатного комплекса весьма мало вероятно [8], говорит о различии механизма каталитического действия Сu+ и Сu++ ионов. По-видимому, наложение взаимодействия свободного Си+ иона с ионом S₂O₈ с образованием SO₄ на термический распад S₂O₈ иона приводит к выпрямлению логарифмической кривой (рис. 1, кривая 3).

Полученные экспериментальные данные обосновываются количественным учетом процессов дисмутации и комплексообразования:

$$2Cu^+ \rightleftarrows Cu^{++} + Cu$$
 (I)

$$Cu^{++} + 2C_2O_4 = Cu(C_2O_4)_2$$
 (II)

$$(I) + (II) = 2Cu^{+} + 2C_{2}O_{4} = Cu(C_{2}O_{4})_{2} + Cu$$
 (III)

и

$$K_{\rm HI} = \frac{[Cu^+]^2 [C_2O_4]^2}{[Cu(C_2O_4)_2]}$$

Так как

$$K_1 = \frac{[Cu^+]^2}{[Cu^{++}]} = 0.62 \cdot 10^{-6}$$

И

$$K_{\rm II} = \frac{[{\rm Cu}^{++}] [{\rm C_2O_4}]^4}{[{\rm Cu}({\rm C_2O_4})_2]} = 5 \cdot 10^{-9}$$

TO

$$K_{III} = K_1 K_{II} = 3.1 \cdot 10^{-15}$$
;

и поскольку в условиях наших опытов

$$2Cu^{+} + 2C_{3}O_{4} = Cu(C_{2}O_{4})_{2} + Cu$$

 $2.1 \cdot 10^{-8} - x \quad 4 \cdot 10^{-3} - x \quad \frac{x}{2} \quad \frac{x}{2}$

TO

$$\frac{2 \cdot (2,1 \cdot 10^{-6} - x)^2 (4,10^{-3} - x)^2}{x} = 3,1 \cdot 10^{-15}.$$

Отсюда методом постановки находим:

$$x = 2,0857 \cdot 10^{-6}$$
 г ион/л.

Следовательно, равновесные концентрации:

$$[Cu^+] = 2,1 \cdot 10^{-6} - 2,0857 \cdot 10^{-6} = 0,143 \cdot 10^{-7}$$
 г ион/л

И

$$[Cu^{++}] = \frac{[Cu^{+}]^{2}}{K_{I}} = \frac{0.143^{2} \cdot 10^{-14}}{0.62 \cdot 10^{-6}} = 3.3 \cdot 10^{-10}$$
 г ион/л.

Ясно, что $[Cu^+] = 0.143 \cdot 10^{-7}$ г ион/ α как концентрацией катализатора нет оснований пренебрегать, если, к тому же, учесть наблюденный Алленом четко выраженый каталитический эффект $[Cu^{++}] = 1 \times 10^{-7}$ г ион/ α [1]. Из сказанного следует закономерность наблюденного каталитического эффекта.

Рассмотрение данных по вариации концентрации катализатора указывает на следующее: при десятикратном увеличении концентрации катализатора ([CuSO₄] = $1,05 \cdot 10^{-5}$ моль/ Λ) наблюдается ускорение реакции, однако скорость реакции катализированной [Cu₂J₂] = $1,05 \cdot 10^{-6}$ моль/ Λ все еще превалирует; отношение констант скоростей равно 2,8. Лишь при стократном избытке [CuSO₄], по сравнению с [Cu₂J₂], скорость реакции, катализированной CuSO₄, всего в 1,6 раз превышает скорость реакции, катализированной Cu₂J₂. Отсутствие каталитического действия [KJ] = $1,05 \cdot 10^{-6}$ моль/ Λ отрицает одновременное действие J'-иона.

Таким образом, из вышесказанного следует, что хотя процесс дисмутации и возможное окисление Cu^+ -иона кислородом воздуха сильно снижают концентрацию его в растворе, все же наблюдается резко выраженное различие в каталитических эффектах $\mathrm{Cu}_2\mathrm{J}_2$ и CuSO_4 . Следовательно, даже в столь незначительном количестве $(0.143\cdot10^{-7}\ \text{г-ион}/\text{л})$ Cu^+ -ион резко проявляет высокую степень каталитической активности в отношении исследуемой реакции.

Ереванский государственный университет

Поступило 8 VI 1964

ՆԱՏՐԻՈՒՄԻ ՕՔՍԱԼԱՏ ԵՎ ԿԱԼԻՈՒՄԻ ՊԵՐՍՈՒԼՖԱՏ ՌԵԱԿՑԻԱՅԻ ՆԿԱՏՄԱՄԲ ԿՈՒՊՐՈ ԵՎ ԿՈՒՊՐԻ ԻՈՆՆԵՐԻ ԿԱՏԱԼԻՏԻԿ ԱԿՏԻՎՈՒԹՅԱՆ ՎԵՐԱՐԵՐՅԱԼ

Ա. Ն. Մամյան

U d d n d n i d

Ուսումնասիրված է $t=50^\circ$ և $[K_2S_2O_8]_0=[N8_2C_2O_4]_0=0.004$ մոլ/լ պալմաններում $CuSO_4$ -ի կատալիտիկ ազդեցությունը կալիումի պերսուլֆատի և նատրիումի օքսալատի միջև ընթացող ռեակցիալի նկատմամբ։ Կատալիպատորի կոնցենարացիան ենթարկվել է տարբերակման. այն է՝ $[CuSO_4]=1.05\cdot 10^{-6}$, $1.05\cdot 10^{-5}$ և $1.05\cdot 10^{-1}$ մոլ/լ Գարզվել է, որ $CuSO_4$ -ի կոնցենտրացիալի աճը արադացնում է ռեակցիան։ Ստացված արդլունքների համարրումը, նախկինում նուլն պալմաններում կատարված, տվյալ ռեակցիալի նկատմամբ Cu_2J_2 -ի կատալիտիկ ազդեցության ուսումնասիրության արդլունքների հետ բերում է այն եզրակացության, որ Cu^+ -իոնը ավելի ակտիվ կատալիզատոր է, քան Cu^+ -իոնը։ $[Cu_2J_2]=1.05\cdot 10^{-6}$ մոլ/լ կատալիզված և $[CuSO_4]=1.05\cdot 10^{-5}$ և $1.05\cdot 10^{-4}$ մոլ/լ կատալիզված ռեակցիաները կարդի են, ընդ որում արադության հաստատուններն են՝ համապատասխանարը $6.42\cdot 10^{-3}$, $2.8\cdot 10^{-3}$ և $10.4\cdot 10^{-3}$ րոպ. $^{-1}$:

ЛИТЕРАТУРА

- 1. T. L. Allen, J. Am. Chem. Soc., 73, 3589 (1951).
- 2. S. P. Srtvastava, S. Ghosh, Z. phys. Chem., 202, 191 (1953).
- 3. C. E. Bawn, D. Margertson, Trans. Faraday Soc., 51, 929 (1955).
- 4. О. А. Чалтыкян, А. Н. Мамян, Р. В. Мовсесян, Науч. тр. Ер. Госунта. Серня хим. наук, 60, 134 (1957).
- 5. В. Г. Хомяков, В. П. Машовец, Л. Л. Кузьмин, Технология электрохимических производств. Госхимиздат, Москва, 1949, стр. 431.
- 6. J. M. Kolthoff, J. K. Miller, J. Am. Chem. Soc., 73, 3055 (1951).
- 7. Е. А. Ушке, А. И. Левин, ЖФХ, 27, 1396 (1953).
- 8. E. Ben-Zvi, Th. L. Allen, J. Am. Chem. Soc., 83, 4352 (1961).