2 ЦЗ4Ц4ЦՆ UUR ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Քիմիական գիտություններ

XIV, № 4. 1961

Химические науки

К. А. Костанян, С. А. Камалян и С. А. Бежанян

Плотность натрово-боросиликатных стекол в расплавленном состоянии

Знание плотности стекол в расплавленном состоянии необходимо для расчетов ряда физико-химических свойств: коэффициента поверхностного натяжения, вязкости, термического расширения, эквивалентной электропроводности и др. величии. Знание плотности в расплавленном состоянии во многом помогает также в разрешении ряда вопросов, связанных со стекловарением. В ванных стекловаренных печах имеют место перемещения стекломассы вследствие различного удельного веса в различных частях бассейна, вызванных разностью темперятур и неоднородностью стекла.

Возникающие в стекломассе неуправляемые конвекционные потоки являются причиной несовершенства ванных печей [1].

Плотность расплавленных стекол и силикатов исследована недостаточно. В литературе отсутствуют данные для расчета плотности расплавленных стекол, в том числе данные измерения плотности натрово-боросиликатных стекол.

В настоящей работе приведены данные по измерениям плотности 22 натрово-боросиликатных стекол системы $Na_2O-B_2O_3-SiO_2$ в температурном интервале $800-1000^{\circ}C$, многие из которых составляют основу большинства промышленных щелочных боросиликатных стекол.

Измерения плотности стекол производились по методу гидростатического взвешивания шарика в расплавленной стекломассе. Платиновый шарик (диаметр 15 мм) взвешивался в расплавленной стекломассе вместе с частью платинового хвостика (длина 36,8 мм, диаметр 0,9 мм).

Исследуемые расплавы получались плавлением кусочков стекол в платиновом или корундовом тигле объемом 70 мл. Стекла заранее были сварены в двухлитровых кварцевых тиглях в керосиновой пламенной печи. Для составления шихты применялись промытый и обработанный соляной кислотой люберецкий кварцевый песок, химически чистые борная кислота и сода. Измерения велись в электрической тигельной печи типа ТГ—1 и в силитовой печи с четырьмя силитовыми стержнями. Взвешивание шарика аналитическими весами "АД—200" производились по досгижении гомогенности и однородности расплава. Постоянство температуры достигалось регулировочным трансформатором.

Плотность определялась по следующей формуле [2]:

$$d_{t} = \frac{M_{1} - (M_{2} - 0,00015)}{V_{1}}$$

где d₁ — плотность расплавленной стекломассы в г см³,

 M_1 — вес шарика с частью погружаемого в расплав хвостика в воздухе в z.

М₂ — вес шарика с частью погружаемого в расплав хвостика в расплаве в 2.

поверхностное няпряжение в дин/с.и.

V₁ — объем шарика в см3.

Значение з получали расчетным путем по формуле Аппена [3]. В расчетах поверхностного напряжения принято значение усредненного парциального коэффициента поверхностного натяжения $B_{\nu}O_{3}$, равное 300. Для всех стекол в измеряемом температурном интервале получались значения τ , лежащие в пределах 285-315 дин c.m. Ошибка в принятом значении коэффициента поверхностного натяжения $B_{\nu}O_{3}$ незначительно влияет на изменение величины плотности, например, изменение парциального коэффициента на 100 вызывает изменение плотности лишь на 0,0001 $z/c.m^3$.

На рисунках 1 и 2 приведены сравнения наших данных по измерениям плотности борного ангидрида и буры с данными других исследователей [4, 5].

Составы исследованных натрово-борсиликатных стекол с содержаниями в весовых процентах Na_2O-40 , 30, 20, 10 приведены на рисунке 3. Разность между синтетическими и аналитическими данными лежит в пределах 2,5%. Результаты измерений приведены в таблице. Некоторые стекла (№ 7—13) были измерены повторно; расхождения составляют не более 4-5%. На рисунке 4 дана зависимость плотности от температуры для стекол № 3, 6, 14, 17 с содержаниями (в весовых процентах) Na_2O соответственно 40, 30, 20, 10. Как видно из приведенного рисунка, для указанных стекол имеет место прямолинейная зависимость плотности от температуры в температурном интервале 800-1000. Аналогичная зависимость наблюдается также и для других исследованных стекол.

На рисунке 5 а, 6, в и г припедены зависимости плотности от состава при 1000 для стекол с 40, 30, 20 и 1000-ными содержаниями №20. На осях ординат на графиках указаны данные Шарциса и др. [4, 6]. Некоторые значения плотности стекол на графиках получены интерполяцией как данных Шарциса и др., так и наших измерений. Сильно отклоняются от наблюдаемой закономерности изменения плотности при 1000 стекла № 10 и 18, несмотря на повторные измерения. Причина такого расхождения нами не выяснена.

Из построенных кривых зависимости плотности от состава видно, что с уменьшением весового соотношения $B_2O_3:SiO_2$ в составе стекол плотность при 1000° возрастает. На изотермах плотности при содер-

№№ стекол и их состав в весов. °/0	Т. в С	Плотность з г/см ²	№ Стекол и их состав в весов. °/а	Т. в С	Плотность в г см ³
1 Na ₂ O ₃ 40 B ₂ O ₃ 40 SiO ₂ 20	980 967 940 900 860 800	2.106 2.121 2.129 2.141 2.159 2.179 2.230	4 Na ₃ O-30 B ₂ O ₃ -60 StO ₈ -10	1000 900 860 800 760	2.044 2.064 2.072 2.107 2,123
Na,O-40 B ₂ O ₁ -30 SiO ₂ -30	1005 940 895 850 800	2,129 2,154 2,181 2,201 2,222	5 Na ₂ O —30 B ₂ O ₃ —50 SiO ₃ —20	1000 900 850 800	2.131 2,122 2.142 2.160
3 Na _x O - 40 B ₃ O ₃ - 20 SiO ₂ - 40	1000 940 890 840 800	2,199 2,221 2,238 2,251 2,279	6 Na ₁ O-30 B ₂ O ₃ -40 SiO ₃ -30	1000 950 900 860 800 755	2.102 2.122 2.146 2.169 2.199 2.228
Na ₃ O 30 B ₂ O ₃ 30 SIO ₂ 40	1000 960 900 847 800 750	2.309 2,326 2,345 2.358 2.389 2.405	11 Na.O-20 B ₂ C ₁ -60 SiO ₂ -20	943 920 895 875 860 845 825 800	2.158 2.174 2.179 2.182 2.188 2.192 2.199 2,206
8 Na ₂ O -30 B ₂ O ₃ -20 SiO ₂ -50	1000 950 900 850 800	2,339 2,357 2,369 2,380 2,397	Na ₂ O —20 B ₂ O ₁ —50 SiO ₂ —30	1000 900 820	2,165 2,197 2,228
9 Na ₂ O - 30 B ₂ O ₃ - 10 S ₁ O ₂ - 60	1000 950 900 850 800	2,315 2,329 2,335 2,355 2,374	13 Na O —20 B ₂ O ₃ —40 SiO ₂ —40	1035 1000 920	2,213 2,256 2,276
10 Na ₂ O -20 B ₂ O ₃ -70 StO ₂ -10	1080 1000 950	2,264 2,289 2,302	14 Na.O -20 B.O30 SiO50	1000 950 900 850	2,313 2,325 2,336 2,356
15 Na ₂ O - 20 B ₂ O ₁ - 20 SiO ₂ - 60	1220 1120 1080 1050	2.238 2.261 2.278 2.286	20 Na ₂ O -10 B ₂ O ₁ -50 SiO ₂ -40	1120 1050 1000	2,030 2,036 2,040
$ \begin{array}{c} 17 \\ Na_2O - 10 \\ B_2O_3 - 80 \\ SiO_2 - 10 \end{array} $	1000 950 900 850	1.944 1.949 1.958 1.963	22 Na ₂ O -10 B ₂ O ₃ 40 SiO ₂ -50	1120 1060	2,190 2,205
18 Na ₂ O 10 B ₂ O ₃ 70 SiO ₂ 20	1000 950	2,241 2,248	23 Na ₂ O -10 B ₂ O ₃ -30 SiO ₂ -60	1270 1210	2,235 2,240
19 Na.O — 10 B.O. — 60 SIO. — 30	1000 940	2.040 2.080	24 Na ₂ O -10 B ₂ O ₃ -20 SiO ₂ -70	1300 1230	2,270 2,290

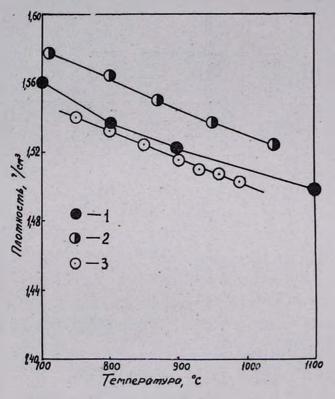


Рис. 1. Зависимость илотности В₂О₃ от температуры. 1—данные Шарциса и др. [4], 2—данные Пей Чиндж-Ли и др. [5], 3—наши данные,

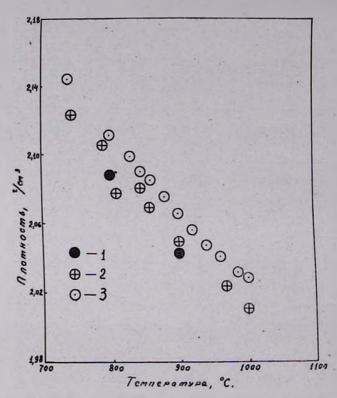


Рис. 2. Зависимость плотности $Na_2B_4O_7$ от температуры. 1—данные Шарциса и др. [4], 2—наши данные при понижении температуры, 3—наши данные при повышении температуры.

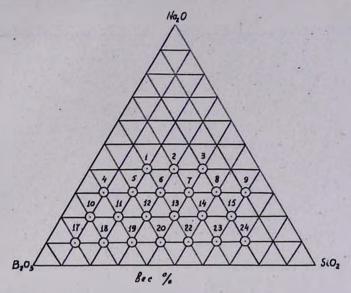


Рис. 3. Составы исследованных стекол системы $Na_2O - B_2O_3 - SIO_2$.

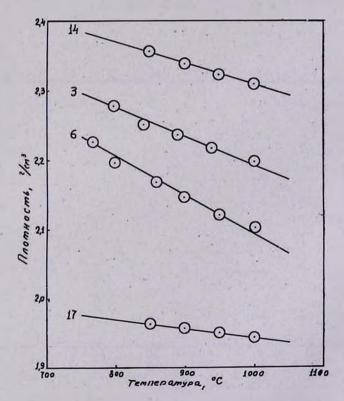
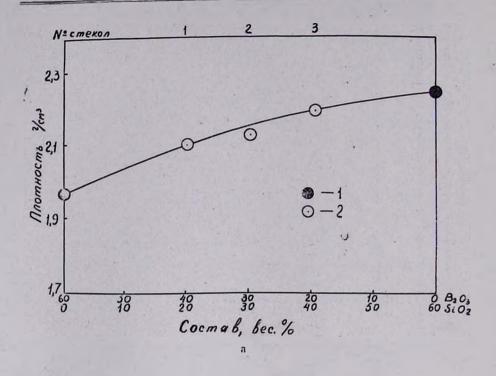



Рис. 4. Зависимость плотности от температуры стекол систечы Na₂O—B₂O₃—SiO₂ с содержанием в весовых процентах Na₂O—40 (стекло № 3), 30 (стекло № 6), 20 (стекло № 141, 10 (стекло № 17).

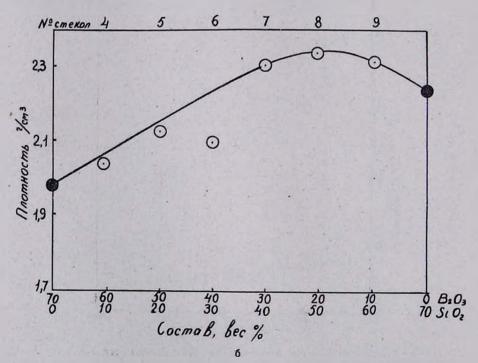
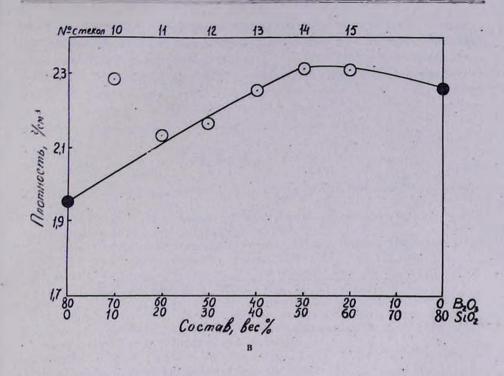
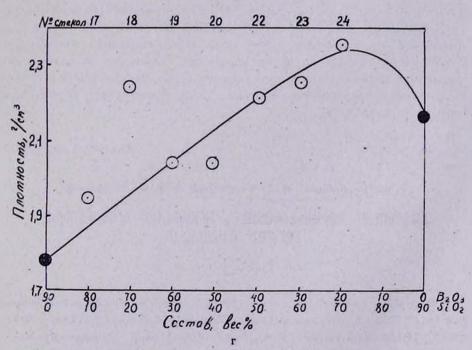




Рис. 5. Зависимость плотности от состава стекол системы $Na_2O-B_2O_3-SiO_2$ для 1000 при содержании Na_2O в весовых процентах: a) 40, б) 30,

в) 20 и г) 10. *1*—данные Шарциса и др. [4, 5], 2—наши данные. Сверху по вертикали указаны номера стекол.

жании 10, 20 и 30% $^{\circ}$ $^{\circ}$ $^{\circ}$ Na $_{2}$ O наблюдаются максимумы. Особенно резко он выражен у стекол с $10\% _{0}$ -ным содержанием $\mathrm{Na}_{2}\mathrm{O}$. Такая же закономерность изменения плотности от состава наблюдается и при 800.

Сравнение кривых изменения плотности от состава в расплав-

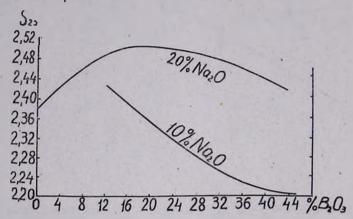


Рис. 6. Плотность стекол системы $N_2O-B_2O_4-SiO_2$ (вес $^0/_0$) в твердом состоянии по данным Инглиша и Терпера, $S_{23}-$ плотносуь при 25.

ленном и твердом [7] (рис. 6) состояниях натрово-боросиликатных стекол с 10 и 20° ₀-ным содержанием $Na_{\circ}O$ показывает сходство характеров изменения плотности в зависимости от содержания $B_{\circ}O_{\circ}$, т. е. максимумы на изотермах лежат в области составов, содержащих $15-30^{\circ}/_{0}$ $B_{\circ}O_{\circ}$. Такой характер изменения плотности от содержания борного ангидрида, по-видимому, связан с так называемой аномалией бора, вызываемой наличием в стекле двух структурных образований борного ангидрида [8].

Институт химии Совнархоза АрыССР

Поступило 30 VI 1961

Կ. Ա. Կոսջանյան. Ս. Հ. Քամալյան և Ս. Ա. **Α**Եժանյան

ՆԱՏՐԻՈՒՄԻ ԲՈՐԱՍԻԼԻԿԱՏԱՅԻՆ ԱՊԱԿԻՆԵՐԻ ԽՏՈՒԹՅՈՒՆԸ ՀԱԼՎԱԾ ՎԻՃԱԿՈՒՄ

Ամփոփում

Խաուիկան որոշման հիդրոստատիկ մեթոդի օդնությամբ ուսումնասիրված են 22 նատրիումի բորասիլիկատալին ապակիների իստությունները 800 — 1300°C ջերմաստիճանալին ինտերվալում։ Ապակիների րաղադրությունները ցույց են արված 3 նկարում։

Գարզված է, որ այդ ապակինների խտության ջնրմաստիճանալին կախումը ուսումնասիրված ինտերվալում արտահալտվում է ուղիղ գծով (նկ. 4)։ Գարզված է նաև, որ խտությունից $B_2O_3:SiO_2$ հարարհրության փոքրացումից

անում է և B_2O_3 պարունակության $15-30^\circ$ - ի դեպքում հասնում է առավելադուլն խտության, որն ավելի պարզորոշ է Na_2O -ի 10, 20 և 30 տոկոս պարունակության դեպքում (նկ. 5)։

Na₂O—B₂O₃—SiO₂ սիստեմի ապակիների խտության և բաղադրության միջև նման կախում տեղի ունի նաև կարծը վիճակում (նկ. 6)։ Այս հանգա-մանքը րացասրվում է բորի կոորդինացիոն թվի փոփոխությամբ, որը գրա-կանության մեջ հայտնի է բորի անոմալիա անվան տակ։

ЛИТЕРАТУРА

- Технология стекла, под редакцией И. И. Китайгородского. Промстройиздат, Москва, 1951.
- А. И. Беляев, Е. А. Жемчужина, Л. А. Фирсанова, Физическая химия расплавленных солей. Металлургиздат, Москва, 1957.
- А. А. Аппен, Расчет свойств силикатных стекол, Информационное сообщение ЦБТИ МПСМ СССР. Промстройиздат, Москва, 1956.
- 4. L. Chartsis, W. Capps, S. Spinner, J. Am. Ceram. Soc. 36, 2, 35 (1953) [Хим. и хим. технолог. 56, 1953].
- 5. Pei-Ching Li, Anil C. Ghose, Gouq-Jen Su, Physics and Chemistry of Glass 1, 6, 198 (1960).
- 6. L. Chartsis, W. Capps, S. Spinner, J. Am. Ceram. Soc. 35, 6, 155 (1952) [Хим. и хим. технолог. 2, 79 (1953)].
- S. English, W. E. C. Wurner, Jn. Soc. Glass. Techn. 7, 155 (1923) (из монографии "Диаграммы стеклообразных систем», Минск, 1959).
- J. Biscoe, B. E. Warren, J. Am. Сегат. Soc. 21, 287 (1938); Л. И. Демкина. Исследование зависимости свойств стекол от их состава. Оборонгиз, Москва 1958).