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Atosin JLA.,

PacnpocTpanenne ynpyro-ciMHOBBIX BOJIH B ePHOIMYeCKOii, peppoMarHuTHOI, C10HCTON cpeae

Hccnenyrorcss yOpoINEHHBIE MOJEIN PACIPOCTPAHEHMS! CIHHOBBIX M yHPYrO-CIIHHOBBIX BOJH B
NIEPHOJNIECKOU cpeie peppoMarHeTHK/HeMarHeTuK. JJJIisi ONHCaHus HCCIeyeMBIX BOJH HCIIOIb3YIOTCS MOJCIH,
yuuThIBaromye ooMeHHble 3G dexTsl B heppoMarHeTuke, a Takke MOJEH, Oepylre B pacyér ynpyrue cBoicrsa
ctpykrypsl. [Toka3aHo, 9TO BECh CIIEKTP YIPYro-CIMHOBBIX BOJIH Pa30MBAETCS Ha IOJIOCHI YaCTOT MPOIMYCKAHUS U
3alupaHus.

Simplified models describing the spin and elastic-spin wave propagation in periodic ferromagnetic structure,
consisting of ferromagnetic and nonmagnetic layers, are investigated. For a description of the elastic-spin waves are
used models that take into account the exchange effects in ferromagnetic as well as models, taking into account the
elastic properties of the structure. It is shown that the frequency spectrum of elastic-spin waves is divided into
transmission and locking bands.

Introduction. More and more attention of researchers attract the problems of spin waves
existence and propagation in artificial

i . 'vz periodic constitutive media called

yy — =l met.am.aterials [1-14]. Years ago §uch
h H, 7) Nonmagnet. periodic structures were called supeFlattlces.
0 If the structure composed of magnetic layers

X

with different magnetization or magnet/non-
magnet layers, then such structures called
vy magnetic metamaterials or magnonic crystals

by analogy with photonic crystals. In this
Fig. 1. paper, some one-dimensional mathematical

i h 1) Ferromagnetic
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models, describing magnetic oscillations, spin and elastic-spin waves in considered structures
are analyzed.

1. Problem statement. Suppose that a periodic layered structure is consisting of an
infinite series of ferromagnetic and nonmagnetic layers of different thicknesses of

h s hz . The structure assigned to the Cartesian coordinate system as shown in Fig.1.
It assumed that the anisotropy axis of easy magnetization of ferromagnetic layers are
parallel to each other and coincide with the direction of Oz axis. Suppose that the
structure is in an external homogeneous constant magnetic field H, =(0,0,H,) and

the vector of the saturation magnetization per unit volume of ferromagnetic layer

—

Mo Zplﬁo (Hy is the ferromagnetic saturation magnetization per unit mass, P is

the mass density of the material of ferromagnetic) is parallel to |:|O and both |\7|0 »Hy

are directed along the axis of easy magnetization, that is Oz axis. We suppose, that
the excitations in the structure does not depend on the Oz coordinate and are
characterized in the ferromagnetic layer by the vector of the elastic displacement

u = (0, 0,u, (X, y,t)) , vector [L= (M(X, y,D), V(X y,1), O) of the magnetic moment,
magneto static potential (I)l (X Y,t) and in the nonmagnetic layer by the vector of

elastic displacement U, = (O, 0,u, (X, y,t)) and magneto static potential ¢, (X, Y,t)
. The excitations of magnetic field intensities in ferromagnetic and nonmagnetic are:
H, =—grade,,H, =—grade,.

The equation of mechanical motion of the medium, the Landau-Lifshits equation of
magnetization moment motion and the quasi-static Maxwell’s equations for the
magnetic field in the ferromagnetic layer [1, 2, 3, 9] are:

2
alzjlzszulJrMof o, ov
at ax oy

%—mM (pl’l%+ﬁv+ﬁuo%—xm/}

ot oy
ov 409, o © Ou T
= L bp+ by, —-—2A
at @y (pl ox b+ by, ox HJ

ou ov
A, =p, (a_l; +6_yj

(1.1)
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Here S =+/G,/p, is the velocity of the elastic wave, QJis the shear modulus,
W\ :YMO, Y is the gyromagnetic constant, f is the coefficient of

piezomagnetism, D=b+H,/M,,b=b+f  bis the constant of magnetic

anisotropy, A is the two-dimensional Laplace operator, A is the coefficient of the
exchange interaction. The exchange interaction should be taken into account when
different magnetic layers are in contact, or if the nonmagnetic spacer is very thin

0
(d2 <30A). The equation of motion and the magneto-static equation in the

nonmagnetic layer are:

62

=sAu,, Ap, =0 (1.2)

S, =,/G,/p, is the velocity of the elastic wave, Q is the shear modulus, P, is the

density of the nonmagnetic.

Contact and boundary conditions for displacements, stresses and magnetic potentials
are:

u,(0) = u,(0); ¢,(0) =, (0);
(0 =0 0 A —pv(0) = 2B
u(h) =2u,(=h); @, (h) =21e,(=h,); (1.3)
| 2 ap,(h) 09, (= Q)

% (h) =%at PV A—E—=
oy (h) 5 (=h),———= oy pv(h) = o

ou
G(213) :plqz L+ HobplV 0(223) _pzi 5'y2 5

A — is the Floquet constant. It should be noted, that if exchange interaction is taken into
account, then we need to add to relations (1.3) the condition for magnetization density i:

ou(0) _ v(0) _
oy oy

Let us consider the simplified one-dimensional mathematical models with the aim of
understanding the nature of elastic-spin waves in periodic structures.

n(0)=v(0)=0 or (1.4)
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2. Consider the model when the ferromagnetic layer is non-deformable (U1 = 0) and

exchange interactions neglected (1=0). It is obvious that this model can describe only
oscillations, not waves. From (1.1) it follows equation for the normal component of the
magnetization v :

2
%sz: f(t) @2.1)

Here I = 0, Qq,,Qq, = \/6(6 +1), f (t) is an arbitrary function of time. In order to

identify the character of oscillatory process, assume that the right side of (2.1)
f (t) = Acosmt, A is a constant. The solution of (2.1) is as follows:

cos ot (2.2)

VvV =

2o
From (2.2) it follows that the frequency = r is the frequency of resonance. Now we can
state that the oscillatory process has a resonance character for this case.

3. Accounting of exchange interaction (7_\,7&0) in non-deformable (U, =0)

ferromagnetic layer. To the problems of propagation of spin waves in non-deformable
media are devoted works [3-5, 7, 8] and many others. The equations in ferromagnetic layer
are:

ot ! 2
o N
EV:—mM (bu—xa—y*j} 3.1)
o’p, ov
2 :pl_
oy oy

The solutions we seek in the form:
V,0)=(M,N,D,)e@ (3.2)
W, v, Q, 1

here M, N, ® | are constants. Substituting (3.2) in the system (3.1) and using the non-zero

solutions existence condition, we come to the following dispersion equation:

2r,.2 2 (A2 S A2
qlo" —o,(b+Ag")(1+b+Aq’)]=0 (3.3)
From (3.3) follows that q2 can have three values:
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q ={- QDE+,/—+QZ b \/—+Qz 0}, (3.4)

where QDE b 2 Q— > Wy ’YM Volume homogeneous wave exists only
Wy

when qzhas a positive value. It means that, when the following inequality is true:

q :—QDE+‘/%+QZ >0

then the wave process exists. Thus, we conclude that the model, when it is taken into account
the exchange interaction, even for non-deformable ferromagnetic, describes the spin wave

process.
4. The ferromagnetic layer is elastic (u1 #0), exchange interaction is neglected

O\,= 0). In addition to these conditions for the model farther simplification, we neglect the

magnetic potential also. To the problems of propagation of elastic-spin waves are devoted
the works [1, 2, 6, 9, 12]. The equations in ferromagnetic layer are:

2 2
oy ljl = , O'U E |\/|0fa_V
ot oy oy
0 A — ou
a_tl:w“”bv”’“”b“‘)a_; 4.1)
ov ~
L o,b
ot 0y b
The general solutions of (4.1) we seek in the form:
(1, v, ) = (M (y), N(y).U, (y) e ™ 4.2)

Substituting (4.2) in (4.1) we come to the equations:
-o’U, =5U,,, + M, N,

ioM =, bN +o,, BuoUly (4.3)
ioN = -, bM

Expressing M, N through U1 from (4.3) we obtain the following equation:

U,, +qU, =0. (4.4)

This is the equation of harmonic oscillations of displacements amplitude in ferromagnetic.
Above are used the following notations:
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q=—2 o= M, fowr, 1,
NS o’ - b’
The solution of (4.4) is as follows:
U,(y)=C, singy+C, cosqy; 4.5)

C,,C, are unknown constants. Using (4.5), we find the solutions of the system (4.1):

U (y,t) = (C; sinqy+C, cos ay)e™;

v(y,t) =aq(C, cosqy —C, sin qy)e™"; (4.6)
oo . i
u(y.t) =~ (C, cos ay — C, sin ay)e™";
oyb
. . _ bbo’p
Here we use following notation: ot = ——¥—%_ . In analogous way, we find the

o —oy,b’
displacements of nonmagnetic layer from (1.2):
U, (y,t) =(C; cos py+C,sin py)e”, p=w/s, (4.7)
C3 R C4 are constants. As we can see from (4.6) and (4.7) the solutions of the problem depend

on spatial coordinate also, i.e. that there is a wave process in the structure. Thus, despite the
fact that we did not take into account neither the exchange interaction, nor the magnetic
potential, but owing to elasticity, this model is suitable for describing the elastic-spin wave
propagation.

Let us examine them more detailed. Substituting solutions (4.6) and (4.7) in the boundary
and contact conditions (1.3) we obtain the system of equations for amplitudes. The solvability
condition of this system gives the following dispersion equation:

M +DA+1=0 (4.8)
where:

D sd sin ph, —msingh +hcos ph, + gcosgh
ssingh —hcosgh ’

h= Pﬂl(%z + MOB(_X) coS th,d — p1q(§2 + Hoba) COS th

pzsz2 p

m=p,s, psin ph,;s=—p,a(§’ +p,ba)singh; g =p,s pdcos ph;

Substituting A = €@ (a=h +h,), K cross-wave number, averaged over the period of the

2

structure, called Bloch’s wave number) into (4.8) we obtain typical for periodic structures
dispersion equation:

coska = cosgh, cos ph, — %|:%+ %} sin gh, sin ph,, (4.9)

1
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pl(sl + “()b(x)

S +a

From (4.9) follows that the frequency spectrum of elastic-spin waves divided into bands of
wave transmission and stopping. Let us consider some special cases:

here z ,Z, =p,S,are impedances of the layers.

a) Impedances of two layers are equal Z = Z, . The dispersion equation takes the form:

ka=w thi (4.10)
S+a S
If the thicknesses of the layers are equal, then the Bloch’s wave number is as follows
k=3tP
2

b) Let us consider the structure when instead of ferromagnetic layer is nonmagnetic one. In
(4.9) we must take o, = o = 0, after that we come to equation:

coska = cosgh cos ph, — {plsl P25 }sm gh, sin ph, . (4.11)
P2S,  PiS

This is the known dispersion equation for layered periodic elastic nonmagnetic structure with
two different impedances. To investigate the interaction between elastic and magnetic
excitations we return to the system (4.1). The solutions of the system we seek in the following
form:

(1, v, ) =(M,N,U)e¥e" (4.12)

Substituting (4.12) in (4.1), after some transformations we obtain the relations between the
magnetic and elastic waves amplitudes:

iM fq 0o, bu,q iM, fgp,a
. N M . M HO U 1_ 20 p12
o's -’ ®* — o} b’ q’s - o

As we see from (4.13), the relationship is resonant. The resonance frequency is in the region

U, = N. (4.13)

. . 1 .
of ultrasonic and hypersonic waves (~ 10' —— ). This phenomenon known as magneto-
sec

acoustic resonance, which used in practice to construct ultra-acoustic or hyper-acoustic
generators and other devices.

¢) Let us consider the case when the thickness of ferromagnetic layer h, — 0. Dispersion

equation takes the form:
2 = 2
1 p(s +P2loba)+ PSS £ & | on Gin ph.
pzsz\/s +a pl(sﬁ +“0ba)

We would like to make a remark, which may be of practical value. After solving the problem

coska = cos ph, —

(4.1) and finding functions L, V, we can calculate magnetic potential Py, satisfying the

boundary conditions, from the equation:
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Here are the results of some numerical experiments:
Q

20 f———"

0.0 05 10 15 20 25 30 k

Fig.2. Dispersion curves for elastic-spin waves in the structure ferromagnetic/nonmagnetic. Frequency
spectrum divided into wave pass-bands and stop-bands (gaps). The solid curve corresponds to the

particular case when h, < m , the dashed one corresponds to the case when h, > hz,

Q=0/0,.

From the Fig. 2 we can conclude that by changing the ratio of the layer thicknesses it is
possible to ensure the desired frequency appeared in either the pass-band or the stop-band of
the wave’s frequency spectrum. It may find application in the construction of magnetic filters
and other devices of spintronics.

5. Concluding remarks. The investigation of the simplified one-dimensional models,
describing the propagation of elastic-spin waves perpendicular to the surfaces in magnetically
ordered periodic media bring us to conclusion, that to describe the mentioned waves we must
take into account exchange effects, or elasticity of media. If we neglect both of them, the
considered model can describe only the oscillatory process. The frequency spectrum of
elastic—spin waves in magnetic periodic structure divided into frequency bands of wave
transmission and stopping. It finds application in practice.

We emphasize an important property of magnonic crystals, by changing the external
magnetic field we can change the properties of crystals, this means that we can control the
wave process. Photonic crystals do not possess this property.

In conclusion, we would like to express our gratitude to Professor Belubekyan M.V. for
useful discussions.

81



10.

11.

12.

13.

14.

REFERENCES

. Akhiezer, A.l, Bar’yakhtar,V.G., Peletminskii, S.V. 1968, Spin waves, North Holland,

Amsterdam, p.368.
Maugin, G.A., 1988. Continuum Mechanics of electromagnetic Solids. North Holland,
Amsterdam, p.560.

. Gourevich, A.G., Magnetic resonance in ferrites and ferroics. Moscow, Nauka, 1973 (in

Russian), p.591.
Bagdasaryan G.E. Existence and propagation character of spatial spin surface waves in
ferromagnets. Proceed. NAS of Armenia, Physics. v.44, 6, p.405-416 (2009).

. Nikitov, S.A., Tailhades, Ph., Tsai, C.S. Spin waves in periodic magnetic structures-

magnonic crystals. J.Magnet.Mater, v.23, 3, 2001, p.p.320-331.

Hasanyan D.J., Batra R.C. Antiplane shear waves in two contacting ferromagnetic half
spaces. J. Elast. (2011), 103: p. 189-203.

Kruglyak,V.V., Kuchko, A.N. Spectrum of spin waves propagating in a periodic magnetic
structure, Physica B339, 2003, pp. 130-133.

Danoyan, Z.N., Ghazaryan, K.B., Atoyan, L.H. Bloch-Floquet spin waves in periodic
ferromagnetic/dielectric Layered structure. Proc. of National Academy of Sciences of
Armenia “ Mechanics”, v.66, 4, 2013, pp. 29-37.

Danoyan Z.N., Piliposian G. T., Hasanyan D.J. Reflection of spin and spin-elastic waves
of the interface of a ferromagnetic half-space. Waves in Random and Complex Media, v.
19-4, Nov. 2009, 567-584.

Duerr, G., Tachi, S., Gubiotti, G. Field-controlled rotation of spin wave nano-channels in
bicomponent magnonic crystals//J. Phys.D: Appl. Phys., 2014, v.47, p. 325001.
Landeros, P., Mills, D. Spin waves in periodically perturbed films, // Phys. Rev. B85,
054424, 2012.

Levchenko,V.V. Propagation of magneto-elastic shear waves through a regularly
laminated media with Metalized interfaces.//Int. Appl. Mech. 40 (1), 97-102 (2004).
Tachi, S., Duerr, G. Forbidden Band Gaps in the Spin wave Spectrum, Phys. Rev. Lett.,
109, 137202, 2012.

Sahakyan S.L. Propagation of spin waves in periodic medium. Proc. of National Academy
of Sciences of Armenia «Mechanics», 2001. Vol.54. Ne3, pp.47-53.

Information about author:

Levon Atoyan, Ph.D. Senior Research Scientist, Institute of Mechanics of NAS (Armenia).
E-mail: levous@mail.ru.

82

Received 09.08.2016



