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Aabrobantu C., [Ipukazunkon I.A.
M3ru6Hble KpaeBble BOJIHBI B CJIy4ae OPTOTPOINHOI YIIPYroii IJIAaCTUHBI HA 0CHOBaHMM Bunkiiepa—®ycca

HW3yuaeTcst 3amaua pacIpOCTpaHEHUS! M3THOHBIX KPAaeBBIX BOJH B ClIydae IOTyOECKOHEYHOH OPTOTPOIHOI
IUIACTHHBI HAa YIIPYroM OCHOBaHUH Bunkiepa-®dycca co cBOOOAHBIMU IPaHUYHBIMU YCIOBHAMU HA Kpaio. AHAIU3
MIOJTy4YEeHHOTO JHCIIEPCHOHHOTO COOTHONIEHMS IIOKa3al HaIMYMe 9YacTOTHl 3allUpaHUs, a TaKkKe JIOKAIbHOIO
MHHEMYMa (a30Boi ckopocTd. Takke MOTydeHO NIpeACTaBICHHE A HNPOGMIS M3THOHOI KpaeBOi BOJHBI B
TepMUHAX [POM3BOINBHOH IIIOCKOH TrapMOHMYECKOH (yHKIHMH, oOofOmaromee Ccioydail CTaHZapTHOTO
CHHYCOHAJIBHOTO IPOQUIIS.

The propagation of bending edge waves on an orthotropic plate supported by the Winkler-Fuss foundation
subject to free edge boundary conditions is investigated. A dispersion relation is derived, with the analysis revealing
a cut-off frequency and a local minimum of the phase velocity. The conventional sinusoidal profile of the
eigensolution is then extended to a more general form, with the deflection expressed in terms of a single plane
harmonic function.

Introduction. Edge waves in semi-infinite thin plates are known since 1960-s. The first
contribution on bending edge wave was made by Konenkov [1], followed by a number of
studies of edge waves and vibrations in plates and shells see [2-7] including the consideration
of 3D edge modes [8-10]. The history of discovery and several re-discoveries of this wave
along with an overview of the state-of-art of edge waves and resonances may be found in
[11]. This paper aims at extension of the current state of art in two directions. First of all, it
generalises the analysis in [2] for a free plate to a slightly more practical case of a plate
supported by the Winkler-Fuss elastic foundation in line with a similar analysis for isotropic
plate [12]. Secondly, the general profile of the wave is constructed in terms of an arbitrary
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plane harmonic function, being related to results of Chadwick [13] and a recent chapter [14].
Finally, several illustrative examples are considered including a conventional sinusoidal
profile together with the general form of the eigensolution arising for arbitrary initial data.
An example of initial conditions corresponding to a point load demonstrates more localized
distribution along the longitudinal variable occurring with increase of the transverse variable
moving away from the edge.

1. Statement of the problem. Consider an orthotropic elastic plate of thickness 24
supported by a Winkler-Fuss foundation, see Figure 1. For a detailed description of the
Winkler-Fuss model and historical review of this and other types of foundations reader is
referred to [15]. The plate occupies the region (—oo <x<o, 0£y<o 0<z< 2h), with the

foundation domain given by (—oo <x<ow, 0Ly<oo, 2h<z< oo).
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Fig.1. Elastic plate on the Winkler-Fuss foundation.

The deflection of the plate I is described by the plate bending equation
4 4 4 2
DY—aVE/+(2D1+4Dx,) 62W2+D,6Vf+2phaV2V+BW:o, (1.1)

* ox Y ox*oy "oy ot
where 3 is the Winkler coefficient, p is mass density and the bending stiffness moduli

D,.D,,D and D, are expressed in terms of the technical constants as
2G, I
3

3 3
Dx:%’ Dy:%> D =v,D, ny:
3(1_\’12\’21) 3(1_V12V21)

with v, E, = v, E,, for more details see [16].

(1.2)

>

The free edge boundary conditions at y =( are imposed, precluding moment and shear

force, namely

2 2
67?”%87?:0’ (D+4D, )5 +D,— ==
Ox o Ox“0y oy

It is noted that the bending stiffness moduli should satisfy the conditions ensuring
positive density of the strain energy density
D, >0, D,+D >0, D +D, <D}, (1.4)
see [2].

2. Dispersion relation. Let us derive the dispersion relation. The deflection is

conventionally sought in the form of a harmonic travelling wave of exponential profile
W(x,y,0) = Aexp[i(kx—ot)-khy], 2.1

where k is wavenumber, o is frequency and the condition ReA >0 ensures decay away

from the edge. Substituting (2.1) into (1.1), one results in the following bi-quadratic equation
. 2D +4D D k* +B—2ph’

A — +—= =

3 3
ow W (1.3)

D, 0.

0’

y y

2.2)
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which may be shown to have two roots satisfying the decay condition ReX >0 . Therefore,
the deflection is expressed in the form

2
W(x,y.t)= Y A exp| i(kx—ot) =k, y ], (23)
Jj=1
with
2D, +4D,, D k* +B—2pho’

W= e a2 (Ren, >0)- 24

B

: D k*

Substituting (2.3) into the boundary conditions (1.3), one obtains a homogeneous linear
system in A; and A, which possesses non-trivial solutions provided the appropriate
determinant vanishes giving

%y (13D, —(D,+4D,,))(AD, = D)=, (1D, (D, +4D,,)) (43D, - ;) =0. (2.5)
Factorising the last equation and using the definitions (2.4), it is possible to obtain
DAL +4D,D M, — D =0, (2.6)

which implies
2
D + P 2pher? ( [D? +4D? —ZDX},) o
4 = 2 . .
Dk D;

Some small algebraic manipulations lead to the dispersion relation of the form

2phw’ —B =D k*c", 2.8)
generalising the result of [12] to the case of orthotropic elastic plate. Here the constant
(/DI +4D} -2 )2 5
+4D,, —
Y I S 2.9)

DD,

appearing first in the paper of Norris [2] generalises the well-known Konenkov constant [1]
for isotropic plate

cK:((l—v)(3v—l+2 2v2—2v+1))%. (2.10)

Similarly to [12], the presence of elastic foundation causes a cut-off frequency

o, = /i 2.11)
2ph

It should be noted that the value of the cut-off frequency is identical to that of the isotropic
case due to the fact that the anisotropy is only affecting the coefficient within wave number.
Moreover, formal similarity between the dispersion relations implies the critical speed of the
associated moving load problem on a supported beam, corresponding to the local minimum
of the phase velocity, for which

k=i L :ﬂ, 2.12)
D, YBD,

where V' ”" denotes the phase velocity, for more details see [KP14]. In view of the boundary
conditions (1.3) the deflection profile may be written as
D —\D
W =expl i(kx—ot)—khy |-————Lexp| i(ke—ot) =k, |. (2.13)
p[ ( ) 1y:| Dl—kﬁDy p[ ( ) Zy]
3. Free wave of arbitrary profile. Let us now extend the exponential profile (2.13) to
a more general form following [13] and [14]. On introducing the dimensionless coordinates
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e=X =2, o=r )P G.1)
h h 2ph

the boundary value problem (1.1), (1.3) takes the form
4 2D, +4D 4 4 2
6 W 1 Xy a W Dx [6 W a W+BIWJ=0’ (3.2)

+ + +
an4 Dy 8&2%2 Dy 6@4 aTZ

4
whnere _F" subject to the tollowin oundary conditions at the edge =
here g =P subj he following boundary conditi he edge =0

D\’
2 2 3 3
Dlaz/+ AGVZ:O, (D1+4D,) 82W + vaVE/:O. (3.3)
og ' om vlogon o
Similarly to [14], we adopt an assumption of a beam-like behaviour,
4 2
y“a I/AI‘/+6—I/ZV+BIW=O, (3.4)
o ot

corresponding physically to parametric dependence on transverse coordinate 1 and

mirroring the string-like analogy for Rayleigh waves, see [13] and also [17]. As will be shown
later, the assumption (3.4) is additionally justified by the fact that the associated dispersion
relation of this “effective” beam on the Winkler foundation coincides with the dispersion

relation (2.8) of the bending edge wave. Here vy is a constant which will be determined later.
In view of assumption (3.4) the plate equation (3.2) transforms to a pseudo-static form
4 2D, +4D_ &* 4

0V£’+ | 4D, 82W2+Dx(1_ 4)6 V4V:0’ 3.5)
on D, ogon” D, 0,
which may be shown to be of elliptic type. The fourth order operator in the left hand side of
(3.5) may be factorised as

AN =0, (3.6)
where A, = afl + }\iaé, and the constants ), and ), are determined from

2D, +4D,, D
xfw;:#, xfxgsz(l_y“), (Re, >0)- (3.7)

y y
The deflection is then expressed as a sum of two arbitrary plane harmonic functions (in the
first two arguments)

W= iWJ (&.2m.7). (3.8)

satisfying the decay conditions at n— oo, generalising the exponential profile (2.3)

considered in the previous section and allowing other types of decay. Substituting (3.7) into
the boundary conditions (3.3) and employing the Cauchy-Riemann identities for the plane
harmonic functions W,

B 1V (3.9)
on o8 a A o
with the asterisk denoting the harmonic conjugate function, we deduce
2 o'w. 2 ow.
> (D -%D,) aazj =0,  >&,/(D+4D,-%D,) ag; =0, (3.10)
J=1 Jj=1

leading to equation (2.5), and therefore, to
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2
(‘/Df +4D7, —2ny) o

D? ’

¥

a3 =

and, finally, to y =c. Thus, the physical meaning of the parameter y introduced in the
assumption (3.4) is the coefficient in the dispersion relation (2.8). It is now clear that the
dispersion relation corresponding to (3.4), coincides with (2.8). Using the properties of
harmonic functions, it is now possible to relate the functions 1, and , from the boundary
conditions (3.10).

Thus, the deflection profile (3.8) may be expressed in terms of an arbitrary single
harmonic function as

D,—\D
W =W, (&AM, 1) ————=W, (&40, 7). (3.12)
(&Am.7) D7D, (&)
4. Illustrative examples. Let us now present several numerical examples, assuming
w (é,kln,r) = cos&exp(—kln —iwt), (4.1)

where the frequency w is determined from the assumption (3.4). The dependence on time is

omitted here, with the curves on Fig. 2 showing the variation of the quantity
2

D —\'D
W, (&xm)=cos&exp(—Am) —ﬁcos&exp(—kzn), (4.2)
1 2%y

on the longitudinal coordinate & for several values of the transverse coordinate 1.

Wo

Fig. 2. Sinusoidal profile.

The calculations are performed for the following values of material parameters
E, =542GPa, E, =18.1GPa, G, =8.96GPa, v, =0.25, h=0.1m, corresponding to a thin
epoxy/glass plate, see [2]. Typically for edge bending waves, one of the attenuation
parameters )7, is close to zero, therefore the exponential decay away from the edge is

rather slow, which is clearly confirmed by Fig. 2.
In addition to this expected behaviour the obtained representation (3.12) may allow
other types of eigensolutions. Let us consider the wave profile originated by arbitrary initial

20



conditions. According to (3.12) the deflection may be expressed in terms of the function
W, (Z;, Am, r) harmonic in the first two arguments, satisfying

2 2
6V12/1+7L126V12/1:0’ (4.3)
on ga
and
4 2w
il 82 +B I, =0, (4.4)
ot on
subject to the following initial conditions
ow,
o =4(82m).  —Hoo=B(EAm). (4.5)

It is clear from (4.3) that 4(&,A,n)and B(&,An) are harmonic functions. Applying the

integral Fourier transform with respect to longitudinal variable & with parameter &, we deduce
W =w (kt)e ™™, (4.6)
where 7" denotes the Fourier transform

= T W, (& Am,t)e "“dE.

Using (4.4), we have the following initial value problem for w, (k, ‘c)

2
%qw +B)w =0, @.7)
subject to
Wl =a(k), % o =b(k). 4.8)

Therefore the solution is given by

W (&m,1 =—j{ sin(81) +a(k)cos(81:)}ek‘“k”kédk, (4.9)

where § =, /y K+ B, - Let us specify

Am
A(é,xm):m, B(&,%m) =0, (4.10)
corresponding to point load at the edge
oW,
Wl =8(8)s 2o =0 @.11)

The function W, is therefore given by

©

W, (&Am,1) =ljcos(81) cos(k&)e ™ dk, (4.12)
n

0
with the deflection following from (3.12). In case of absence of the foundation ([3 = O) the

last formula (4. 12) may be simplified
W, (&,m,7) ZReJexp[ly o —(dn+ (1) iE) k |k, (4.13)

which may be evaluate exactly through a standard integral

©

exp(—px® —gx)dv=— | T exp| L |erfe Rep=0,Imp=#0,Req>0). (4.14)
.!; ( ) 2 p p 2\/_ ( )
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see [20]. Using the last result (4.14), it is possible to obtain for the scaled deflection
W, = 4ym (,m,7) as

D, -\D,
D, -)\3D,

m=1

2
W, (en.t)= Re{e””“Z(f(?nCJr(—l)’”ix)— f(7»26+(—1)'”ix)ﬂ, (4.15)
where f(z) = ezzerfc(z) ,with £ =2yt and n =2y
The dependence of the scaled deflection 7, given by formula (4.15) for several values of ¢

is shown on the next Fig. 3, clearly showing a different type of behaviour compared to Fig.
2. The calculations are performed for epoxy glass, with the values of material parameters are
the same as for Figure 2. Indeed, the curves show a more localized type of distribution of the
deflection along the longitudinal coordinate. Curiously, the localisation effect increases as

we move away from the edge, see for example the curve for £ =50. Indeed, as seen from
Fig.3, for most of the curves the deflection amplitude decays away from the centre, except
for one at the edge £ =0. This may be readily explaneed by the result for the integral (4.13)

at n= 0,
] ’ L% [ 2 B 4.16
_[cos(ock )cos(ﬁk)dk=_ Tgin| Z4 2|, (4.16)
0 2Va 4 4a
see [20]. Using the last result, we deduce for the scaled deflection at the edge £ =0
2D, (A=A
WS(X,O,‘C)Zy(—Izz)Sin(£+X2j. 4.17)
D,-\2D, 4
4
Wi

3

2

1

0 .
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Fig.3. Non-sinusoidal profile.

5. Concluding remarks. Thus, we have considered bending edge waves on a thin
orthotropic plate supported by the Winkler-Fuss elastic foundation. The dispersion relation
has been analysed revealing similar features with that of isotropic Kirchhoff plate considered
in [12]. Clearly, by setting =0 one obtains results for unsupported free plate. Extension

22



of the analysis to different foundation models in line with [18] is possible along with
consideration of variable elastic characteristics similarly to [19].

The consideration was then focused on generalisation of the harmonic exponential
profile resulting in a general representation of the eigensolution in terms of a single plane
harmonic function originating from [13]. The presented examples illustrate theoretical
possibilities of not only sinusoidal but also localized profiles.

As one more direction of further development, we note a slow-time perturbation
procedure which could be applied to the obtained eigensolution. The results should provide
a parabolic-elliptic model for the bending edge wave, extracting its contribution to the overall
dynamics response, generalising the results of [14] and [20]. Other plate theories may also
be considered, see [21], along with the case of non-classical boundary conditions [3].
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