Մեխանիկա

XXXVIII, No. 4, 1985

Механика

УДК 539,376

О НАПРЯЖЕННОМ СОСТОЯНИИ ДЕФОРМИРУЮЩЕЙСЯ ПО СТЕПЕННОМУ ЗАКОНУ ПЛОСКОСТИ, ОСЛАБЛЕННОЙ КОНЕЧНЫМ ИЛИ ПОЛУБЕСКОНЕЧНЫМ РАЗРЕЗОМ

. М. Э НРЧАТНХМ

Обсуждаются две смещанные задачи о напряженном состоянии плоскости, ослабленной прямолинейным конечным или полубесконечным разрезом, к берегам которого приложена олинаковая нормальная разрывающая нагрузка произвольной интенсивности. Эти задачи рассматриваются в постановке нелинейной теории установившейся ползучести при степенной зависимости между интенсивностями напряжений и скоростями деформаций в первом приближении сообразио обобщенному принципу суперпозиции перемещений [1, 2], несколько модифицированному и настоящей работе. Определяющие интегральные уравнения задачи решаются и замкнутой форме методом Карлемана продолжения в комплексную плоскость, позроляющем выражения раскрытий разрезов и коэффициентов интенсивности разрушающих напряжений на их концах получить в квадратурах довольно простой структуры. На примере рассматриваемых задач показана эквивалентность энергетического метода Гриффитса и силового критерия Ирвина.

Такими же интегральными уравнениями описываются обсуждаемые здесь задачи в постановке линейной теории упругости, когда модуль упругости плоскости по вертикальной координате изменяется по степенному закону С этой точки зрения задача о конечном разрезе рассмотрена в [3, 4]. Исследование обширного класса смешанных и контактных задач для линейно-деформируемого основания общего типа, включающего указанный степенной гип, проведено в [5, 6], а также в

Многие краевые задачи, в том числе контактиме, нелинейной геории установившейся ползучести при степенной зависимости между напряжениями и екоростями деформаций рассмотрены в работах [8—10], и которых используется обобщенный принцип суперпозиция перемещений или уточияется этот принцип.

Укажем также на работу [11], позволяющую расширить класс исследуемых здесь задач.

1. Пусть плоскость, отнесенная к правой системе координат Oху, вдоль оси Oх содержит конечный разрез $L = \{y = 0; |x| \le a\}$ или полубесконечный разрез $L = \{y = 0; |x| \le a\}$, берега которых загружены одинаковыми по величине и противоположными по направлению вер-

тикальными силами произвольной интенсивности p(x), обладающими конечными равнодействующими и моментами. Пусть далее, материал плоскости подчиняется физическому закону $x_1 + \dots + (0 , где <math>x_2 + \dots + (0 , где <math>x_3 + \dots + (0 , где <math>x_4 + \dots + (0$

Основываясь на обобщенном принципе суперпозиции перемещений [1, 2], вынедем основные уравнения поставленных задач. Спачала коротко остановимся на этом принципе.

Как известно [1], илоская пелинейная граничная задача для полуплоскости, следующей указанному степенному закону и загруженной
ил своей границе вертикальной сосредоточенной силон, имеет точное
решение. Согласно последнему вертикальные перемещения v(x) граничных точек верхней полуплоскости v>0, загруженной на своей
границе паправленной вдоль Оу вертикальной сосредоточенной силой
Р, в условнях несжимвемости материала выражаются формулой

$$v(x) = A \frac{P^m}{r^{m-1}}, \quad A = \frac{(2-m)\sin(\lambda - 2)}{iK_0(m-1)J^m(u)}, \quad m = 1/\mu$$
 (1.1)

$$\lambda = \sqrt{2\mu - 1}/\mu, \quad J(\mu) = 4 \int_0^{\pi} (\cos \lambda \theta)^{\mu} \cos \theta d\theta$$

где r — расстояние точки приложения силы P от точки (x,0).

Введя обобщенные перемещения $v_{x,y} = ||v(x)||^2$, из (1.1) будем иметь

$$v_{ch} = |A|^{\alpha} P/r^{1-\alpha} \qquad (1.2)$$

Поскольку последние линейно зависят от приложенных сил P_1 то к ним применяется обычный принцип суперпозиции, что и составляет сущность обобщенного принципа суперпозиции перемещений [1] Очевидно, что такой принцип в определенном смысле может быть оправлан лишь для значений P_1 достаточно близких к единице (случай P_2 соответствует линейно-упругому материалу).

Основанные на указанном принципе решения контактных задач о вдавливании штампон в полуплоскость или смещанных задач о разрезах в плоскости характеризуются тем, что в концевых точках штампов или разрезов порядок особенностей напряжений равен в/2. С другой стороны, анализ асимптотического понедения напряжений вблизи концевой точки трещины в упругопластических степенио упрочияющихся телах при плоской деформации показывает [12], что точный порядок особенности напряжений равен в/(в+1). По мере приближения в к единице разинца между этими двумя порядками стремится к нулю.

^в ч(x) фактически будут скорпсти, а не перемещения. Однако, зая простоты и заявисйшем будем употреблить термии "перемещения"

По по мере приближения № к пулю (случай № = 0 соответствует идеально иластическому материалу) эта разница становится существенной.

Однако, оставаясь в рамках работ [1, 2], обобщенный принцип суперпозиции перемещений можно провести так, чтобы в концевых точках штампов или разрезов получить точкый порядок напряжений. А именно, обобщенные перемещения введем -ледующим образом:

- [[v(x)]]^{v/(u+1)}. Тогда согласно (1.1)

$$|v_{05,-}|A|^{\mu/(a-3)} \frac{|D|^{1/(a-4)}}{|f|^{1-2\mu/(a-1)}} = |A|^{\mu/(a-3)} \frac{|D|^{1-\alpha/(a+4)}}{|f|^{1-2\mu/(a-1)}}$$

Будем считать, что значения и весьма близки к нулю. При этом величинами $\nu/(\nu+1)$ по сравнению с единицей будем прецебрегать, в то время как величины $2\nu/(\nu+1)$ будем оставлять. В результате

$$v_{00} = |A|^{n/(n-1)} \frac{1}{f^{1-2n/(n+1)}}$$

Исходя из последней формулы, к с_{сс.} опить мэжно применять обычный принции супернозиция, который в консечном итоге обеспечит гочным порядок особенностей напряжении в концевых точках штампов или разрезов.

Таким образом, обобщенный принции супернозиции перемещений можно провести по-разному для значений v, близких к единице и близких к нулю. На основе изложенных соображений в дальнейшем будем считать, что и показателе r в формуле (1.2) у может быть заменен на 2a/(p+1).

Перейдем геперь к выволу основных уравнений поставлениях задач. С этой целью отдельно рассмотрим верхиюю и нижнюю полуплоскости у 0, загруженные на своих границах задлиными вертикальными силами p(x), действующими на берегах разреза L, и неизвестными пока нормальными силами z(x), действующими вне разр за L. Силыю только знаком отличаются от разрушающих нормальных напряжений. Придерживаясь обобщенного принципа суперпозиции перемещений, для нертикальных исремещений $v_{\perp}(x)$ граничных точек верхией и нижней полуплоскостей, соответственно, будем иметь следующие выражения:

$$v_{\pm}(x) = -A \left[\int_{-\infty}^{x} \frac{q(s)ds}{|x-s|^{1-s}} \right]^{1/2} (1/2 < \mu < 1)$$

$$+ p(x), x \in I.$$
(1.3)

$$q(x) = \begin{cases} p(x), & x \in L \\ \sigma(x), & x \in L' \end{cases} - \infty < x < \infty$$

где L'-дополнительный к разрезу L питервал.

Далее, как обычно, введем в рассмотрение функцию скачка вертикальных персмещений на разрезе

$$v_{+}(x) - v_{-}(x) = \begin{cases} \chi(x), & x \in I, \\ 0, & x \in L' \end{cases}$$

с помощью которой из (1.3) будем иметь 18

$$\int_{-\infty}^{\infty} \frac{q(s)ds}{|x-s|^{1-s}} - h(x); \quad h(x) = \begin{cases} (2A)^{-s} |\chi(x)|^{s}, & x \in L \\ 0, & x \in L' \end{cases}$$

Отсюда по навестной формуле обращения ([13], с. 584) получим следующее ключевое уравнение:

$$q(x) = \frac{\lg(\pi \mu/2)}{2\pi} \frac{d}{dx} \int \frac{\operatorname{sgn}(x-s)}{|x-s|^{\mu}} h(s) ds \quad (-\infty < x < \infty)$$
 (1.4)

Так как вследствие непрерывности перемещений функция $\chi(x)$ на концах разреза L обращается в нуль, то при помощи интегрирования по частям уравнение (1.4) можно представить в виде

$$q(x) = \frac{\lg(\pi \mu/2)}{2\pi} \int_{L}^{\infty} \frac{\operatorname{sgn}(x-s)}{|x-s|^{4}} h'(s)ds \quad (-\infty < x < \infty)$$
 (1.5)

В случае конечного разреза L из (1.5) получим следующие основные уравнения:

$$\int_{a}^{\infty} \frac{\operatorname{sgn}(x-s)}{|x-s|^{\mu}} \psi'(s) ds = g(x) \quad (|x| < a)$$
 (1.6)

$$\varphi(x) = \frac{\operatorname{tg}(\pi \mu/2)}{(2A)^{\mu} 2\pi} \int_{-a}^{a} \frac{\operatorname{sgn}(x - s)}{|x - s|^{\mu}} \, \varphi'(s) ds \quad (|x| > a)$$
(1.7)

$$\psi(x) = [\chi(x)]^{\alpha}, \quad g(x) = 2\pi \text{ctg}(\pi u/2)(2A)^{\alpha} p(x) \tag{1.8}$$

Интегро-дифференциальное уравнение (1.6) должно рассматриваться при граничных условиях

$$\psi(\pm a) = 0 \tag{1.9}$$

Введением безразмерных величин

$$\frac{z}{\eta} = \frac{x/a}{s/a}; \quad \frac{z_0(z)}{p_0(z)} = \frac{1}{1} \frac{(2A)}{(2A)^n} \frac{z(az)}{p(az)}$$

$$\varphi'(\xi) = \frac{z}{2} \frac{(az)}{a^{1-\alpha}}; \quad -1 \le z, \quad \eta \le 1$$

уравнения (1.6) — (1.7) преобразуем к следующим:

$$\int_{\mathbb{R}} \frac{\operatorname{sgn}(\xi - \eta)}{|\xi - \eta|^{2}} \varphi'(\eta) d\eta - f(\xi) \quad (|\xi| < 1)$$
(1.10)

$$\sigma_{0}(\xi) = \frac{\operatorname{tg}(\pi\mu/2)}{2} \left(\frac{\operatorname{sgn}(\xi - \eta)}{|\xi - \eta|^{\mu}} \right) \quad (|\xi| > 1)$$
 (1.11)

гле согласно (1.8)

$$f(\xi) = g(a\xi) = 2\pi c t g(\pi u/2) p_0(\xi)$$
 (1.12)

При этом условия (1.9) запишутся в виде

В случае полубесконечного разреза / основные уравнения задачи будут

$$\int_{0}^{\infty} \frac{\operatorname{sgn}(\xi - \eta)}{|\xi - \eta|^{\alpha}} \varphi'(\eta) d\eta = f(\xi) \quad (\xi > 0)$$
(1.14)

$$\sigma_0(\xi) = \frac{\lg(\pi p/2)}{2\pi} \int_0^{\infty} \frac{\operatorname{sgn}(\xi - \eta)}{|\xi - \eta|^n} \varphi'(\eta) d\eta \quad (\xi < 0)$$
 (1.15)

$$\varphi(0) = 0 \tag{1.16}$$

где обозначения прежине1.

2. Решение интегро-дифференциального уравнения (1.10) при гряпичных условиях (1.13) можно получить из известных результатов [3, 13]. Однако, здесь его решение будет построено методом Карлемана продолжения уравнения в комплексную плоскость, отличным от указанных. Этот метод позволяет кроме раскрытия разреза определить также нормальные разрушающие напряжения вне разреза и, тем самым, найти полное решение задачи.

Основываясь на идеях работы [14], введем в рассмотрение функцию комплексного переменного

$$\Phi(z) = (z^2 - 1)^{\mu/2} \left(\frac{\varphi(z)dz}{(z-z)} \right)$$
 (2.1)

В комплексной плоскости z= t=t, разрезанной вдоль отрезка [-1,1] вещественной оси, можно выбирать однозначную аналитическую ветвы этой функции. Выберем ту ветвы которая в окрестности бесконечно удаленной точки имеет представление

$$\Phi(z) \sim 1$$
 при $z \to \infty$

Далее, на берегах разреза по отрезку [-1,1] вещественной оси будем считать

$$z - 1 - (1 - \zeta)e^{\pm i\pi}; \quad z + 1 - 1 + \varepsilon; \quad (z \to \xi - i0)$$

$$z - \eta \to -\eta \quad (\xi \to \eta); \quad z - \eta \to (\eta - \xi)e^{\pm i\pi} \quad (\eta \to \xi) \quad (|\xi| < 1)$$

Тогда для граничных значений выбранной ветви функции $\Phi(z)$ на верхнем и нижием берегах разреза соответственно будем иметь

$$\Phi^{+}(\xi) = (1 - \frac{1}{2})^{\mu/2} \left[- \int_{-1}^{\frac{\pi}{2}} \frac{\varphi'(\gamma_{i})d\gamma_{i}}{(\xi - \gamma_{i})^{\mu}} + e^{-l\pi\mu/2} \int_{-1}^{\xi} \frac{\varphi'(\gamma_{i})d\gamma_{i}}{(\gamma_{i} - \xi)^{\mu}} \right]$$

$$(|\xi| < 1)$$

$$\Phi^{-}(\xi) = (1 - \frac{1}{2})^{\mu/2} \left[e^{-(\epsilon\mu/2)} \int_{-1}^{\xi} \frac{(\gamma_{i})d\gamma_{i}}{(\xi - \gamma_{i})^{\mu/2}} + e^{l\epsilon\mu/2} \int_{-1}^{\xi} \frac{(\gamma_{i})d\gamma_{i}}{(\gamma_{i} - \xi)^{\mu/2}} \right]$$

 $^{^1}$ В случае полубескояечного разреза L в качестве a можно брать длину люфого комечного отрезка, расположенного на L

Отсюда

$$\int \frac{\pi'(n)dn}{(\xi-\eta)n} = \frac{(1-\xi^2)^{-\mu/2}}{2i\sin(\pi\mu)} \left[\Phi^{-}(\xi)e^{-i\pi\mu/2} \right] \qquad (2.2)$$

$$\int \frac{\pi'(n)dn}{(\tau_i - \xi)^{\mu}} = \frac{(1-\xi^2)^{-\mu}}{2i\sin(\pi\mu)} \left[\Phi^{-}(\xi)e^{i\pi\mu/2} - \Phi^{-}(\xi)e^{-i\pi\mu/2} \right] \qquad (2.3)$$

При помощи (2.2) — (2.3) уравнение (1.10) можно свести к элементарной краевой задаче

$$\Phi^{+}(\xi) - \Phi^{-}(\xi) = 2i\sin(\pi\mu/2)(1 - \xi^{2})^{\mu/2}f(\xi) \quad (|\xi| \le 1)$$
 (2.4)

о скачке аналитической функции на разрезе. При этом уравнение (1.10) и краевая задача (2.4) в классе типа гельдеровских функций эквивалентны [13, 15].

Решение красвой задачи (2.4) имсет вид

$$\Phi(z) = \frac{\sin(\pi u/2)}{\pi} \int_{-\pi/2}^{\pi} \frac{(1-\eta^2)^{n/2} f(\eta) d\eta}{\eta - z} + C$$
 (2.5)

где С—произвольная постояниая, подлежащая определению. Теперь по формулам Племсля-Сохоцкого ил (2.5) определим граничные значения Ф±(₹) ([₹]<1) и их выражения подставим в (2.2). Получим

$$\int_{-1}^{1} \frac{f(\eta)d\eta}{(\xi-\eta)^{\mu}} = \frac{1}{2} f(\xi) + (1-\xi^{2})^{-\mu/2} \int_{-1}^{1} \frac{(1-\eta^{2})^{\mu/2} f(\eta)d\eta}{2\pi} + C(1-\xi^{2})^{-\mu/2} \quad (|\xi| < 1)$$
(2.6)

что полностью совпадает с известным результатом из [13] (с. 579). Чтобы найти решение исходного уравнения (1.10), остается к (2.6) применить формулу обращения Абеля, которая даст

$$\varphi'(\xi) = \frac{\sin(\pi \mu)}{\pi} \frac{d}{d\xi} \left[\frac{1}{2} \int_{-1}^{\xi} \frac{f(\eta) d\eta}{(\xi - \eta)^{1 - \mu}} + CG_{\mu}(\xi) + \frac{1}{2\pi} \int_{-1}^{\xi} \frac{(1 - \eta^2)^{-\mu/2} d\eta}{(\xi - \eta)^{1 - \mu}} \int_{-1}^{\xi} \frac{(1 - u^2)^{-\mu/2} (u) du}{u - \eta} \right]$$
(2.7)
$$G_{\mu}(\xi) = \int (1 - \eta^2)^{-\mu/2} (\xi - \eta) d\eta$$

В последнем интегралс положив

$$1+\eta=tv$$
, $t=1+\epsilon$ $(0\leqslant t,\ v\leqslant 1)$

при помощи известной формулы ([16], с. 300, формула 3.197.3) находим

$$G_{\nu}(\xi) = \left(\frac{1+\xi}{2}\right)^{n/2} \frac{\Gamma(\nu)\Gamma(1-\nu/2)}{\Gamma(1+\nu/2)} F\left(\nu/2, 1-\mu/2; 1+\nu/2; \frac{1+\xi}{2}\right) \quad (|\xi| \le 1)$$

где $\Gamma(x)$ — гамма-функция Эйлера, а F(a, b; c; x)—гипергеометрическая функция Гаусса. Легко видеть, что ([17], с. 112, формула (46)) $G_n(1) = \pi \csc(\pi n/2)$.

Далее, из (2.7) получим

$$\psi(\xi) = \frac{\sin(\pi \mu)}{2\pi} \int_{-1}^{\xi} \frac{f(\eta)d\eta}{(\xi - \eta)^{1 - \mu}} + CG_{\eta}(\xi) + \frac{\sin(\pi \mu) tg(\pi \mu/2)}{2^{-2}} \int_{-1}^{\xi} \frac{(1 - \eta^{2})^{-1 - \mu} d\eta}{(\xi - \eta)^{1 - \mu}} \int_{-1}^{\xi} \frac{(1 - \mu^{2})^{\mu/2} f(u)du}{u - \eta} \quad (|\xi| \le 1) \quad (2.8)$$

Оченидно, что $\tau(-1) = 0$. Чтобы удовлетворить и второму граничному условию (1.13), то есть условию $\psi(1) = 0$, в (2.8) положим $\bar{s} = 1$ и результат приравним нулю. Поменяв порядок интегрирования в получающемся при этом повторном интеграле в (2.8) и воспользовавшись формулой 3.228.2 из [16] (с. 304), обнаружим, что C = 0.

С учетом последнего и (4.12) формулы (2.7) и (2.8) представим в виде

$$\varphi'(\xi) = 2\cos^{2}(\pi\mu/2) \frac{d}{d\xi} \left| \int_{-1}^{1} \frac{p_{0}(\eta)d\eta}{(\xi - \eta)^{1}} \right| + \frac{\sin(\pi\mu)}{\pi} \frac{d}{d\xi} \left| \int_{-1}^{1} (1 - u^{2})^{n/2} p_{0}(u)du \int_{1}^{1} \frac{(1 - \eta^{2})^{-1/2} d\eta}{(\xi - \eta)^{1 - \mu}(u - \eta)} \right| \quad (|\xi| < 1) \quad (2.9)$$

$$\varphi(\xi) = 2\cos^{2}(\pi\mu/2) \int_{0}^{1} \frac{p_{0}(\eta)d\eta}{(\xi - \eta)^{1 - \mu}(u - \eta)} + \frac{\sin(\pi\mu)}{\pi} \int_{0}^{1} (1 - u^{2})^{n/2} p_{0}(u)du \int_{0}^{1} \frac{(1 - \eta^{2})^{-1/2} d\eta}{(\xi - \eta)^{1 - \mu}(u - \eta)} \quad (|\xi| < 1) \quad (2.10)$$

Чтобы не иметь дело с сингулярными интегралами, берущимися в смысле Коши, преобразуем входящий во вторые слагаемые формул (2.9) и (2.10) внутренний интеграл. В результате, как выше, можем записать

$$I_{\mu}(\xi, u) = \int_{-1}^{\xi} \frac{(1 - r_{i}^{2})^{-\alpha/2} dr_{i}}{(\xi - r_{i})^{1 - \mu} (u - r_{i})} = \frac{1}{2} \left(\frac{1 + \xi}{2}\right)^{\mu/2 - 1} \sum_{k=0}^{\infty} a_{k} \left(\frac{1 + \xi}{2}\right)^{k} M_{\alpha}^{k}(\xi, u)$$

$$(2.11)$$

$$M_{\alpha}^{k}(\xi, u) = \int_{0}^{\xi} \frac{v^{k - \mu/2} (1 - v)^{\mu - 1}}{y - v} dv \left(y = \frac{1 + u}{1 + \xi}\right), \quad a_{k} = (-1)^{k} \left(\frac{-\mu/2}{k}\right)$$

$$(k = 0, 1, 2, ...)$$

Приняв во пинмание известные формулы ([16], с. 300 формула 3.197.3 и с. 304 формула 3.228.3), находим

$$M^{k}(s, u) = \begin{cases} \frac{\Gamma(u)\Gamma(k+1-u,2)}{\Gamma(k+1+u,2)} F\left(1 - \frac{1}{1+u}\right) & \frac{1}{1+u} \\ \frac{\Gamma(u-1)\Gamma(k-1-u,2)}{\Gamma(k+u,2)} \left(1 - \frac{1}{1+u}\right) & \frac{1}{1+u} \\ \frac{\Gamma(u-1)\Gamma(k-1-u,2)}{\Gamma(k+u,2)} \left(1 - \frac{1}{1+u}\right) & \frac{1}{1+u} \\ \frac{\Gamma(u-1)\Gamma(k-1-u,2)}{\Gamma(k+u,2)} \left(1 - \frac{1}{1+u}\right) & \frac{1}{1+u} \end{cases}$$

Формулы (2.11) и (2.12) в сочетании с эффективными вычислительными процедурами из [18] для гипергеометрической функции могут быть использованы при числовых расчетах для раскрытия разреза $\phi(\xi)$.

Обратимся теперь к уравнению (1.11). Сопоставление (2.1) и (2.5) даст

$$\sigma_0(\xi) = \frac{\sin(\pi n/2)}{\pi} \operatorname{sgn}\xi(\xi^2 - 1)^{-n/2} \left(\frac{1 - 2\pi \log n}{n} + \log n\right)$$
 ([4] > 1)

Это соотношение после перехода к прежним переменным примет вид

$$\sigma(x) = \frac{\sin(\exp(2))}{\pi} \operatorname{sgn} x(x^2 - a^2) = \int_{-\pi}^{\pi} \frac{(a^2 - s^2) + a(s) ds}{s - x} \quad (|x| > a) \quad (2.13)$$

Отсюда для коэффициентов интенсивности пормальных разрушающих цапряжений на концах разреза получим следующие выражения:

$$K_{1} = \lim_{x \to a+0} [(x-a)^{\mu/2} \sigma(x)] = \frac{\sin(a+2)}{-(2a)^{\mu/2}} \int (a-s)^{\mu/2} - (a+s)^{\mu/2} p(s) ds$$

$$(2.14)$$

$$K_{1} = \lim_{x \to a+0} [(x-a)^{\mu/2} \sigma(x)] = \frac{\sin(a+2)}{-(2a)^{\mu/2}} \int (a-s)^{\mu/2} (a+s)^{\mu/2} - p(s) ds$$

Таким образом, пормальные разрушающие папряжения вие разреза, взятые с обратным наком, длются формулой (2.13), а их коэффициенты интенсивности на концах разреза—формулами (2.14). В предельном случае и→1 формулы (2.14) переходят в выражения коэффициентов интенсивности в известной задаче Гриффитса [19].

Отметим, что введенная по формуле (2.1) функция $\Phi(z)$ в данном случае представляет собой аналог известного комплексного потенциала для линейно-упругой полуплоскости.

3. Теперь построим решение уравнения (1.14). Введом функцию

$$\Phi(z) = z^{z-1} \int_{-\infty}^{\infty} \frac{\varphi'(\eta) d\eta}{(z-\eta)^{\alpha}}$$
(3.1)

В комплексной плоскости г— разрезанной вдоль луча вещественной оси, можно выбирать однозначную аналитическую вствь этой функции. Выберем ту вствы, которая в окрестности бесконечно удаленной точки имеет асимптотическое представление

$$\Phi(z) \sim \frac{1}{z}$$
 при $z \to \infty$

Далее, на берегах разреза по лучу $[0, \infty)$ вещественной оси будем считать $(z \rightarrow z \pm i0)$

$$z \rightarrow z$$
; $z - \eta \rightarrow \bar{\zeta} - \eta$ ($z \rightarrow \eta$), $z \rightarrow \eta \rightarrow (\eta - \bar{\zeta})e^{\pm i\tau}$ ($\eta > z$)

Тогда после определения граничных значений выбранной ветви функции $\Phi(z)$ на верхнем и нижнем берегах разреза будем иметь

$$\int_{0}^{\xi} \frac{(\pi)d\pi}{(\xi - \eta)^{\mu}} = \frac{\xi^{\mu}}{2i\sin(-\mu)} \left[\psi^{\mu}(\xi)e^{i\phi\mu} - \psi^{\mu}(\xi)e^{-i\pi\mu} \right] \quad (|\xi| < 1) \quad (3.2)$$

$$\int_{\xi} \frac{1}{(\eta - \xi)^{\mu}} = \frac{\xi^{1-\mu}}{2i\sin(\pi\mu)} \left[\Phi^{-}(\xi) - \Phi^{+}(\xi) \right]$$
 (3.3)

При помощи (3.2) и (3.3) уравнение (1.14) можно свести к эквивалентной краевой задаче

$$\Phi^{+}(z) = e^{-tr\mu}\Phi^{-}(z) + 2ie^{-t-z^2}\sin(\pi\mu/2)z^{-1}/(z) \quad (z>0)$$
 (3.4)

Далее, следуя известной процедуре [13, 19], решение красвой задачи (3.4) представим в виде

$$\Phi(z) = \frac{z \sin(\pi i/2)}{z} = \int_{0}^{1} \frac{r_{i}^{y/2} f(r_{i}) dr_{i}}{r_{i} - z}$$
(3.5)

Телерь по формулам Племеля-Сохоцкого из (3.5) найдем $\Phi^{\pm}(\xi)$ ($\xi>0$) и подставим в (3.2). В результате получим

$$\int_{0}^{1} \frac{\varphi'(\eta)d\eta}{(\xi-\eta)^{\mu}} = \frac{1}{2} f(\xi) + \frac{\lg(\xi-\eta)}{2\pi} i^{-\alpha} \int_{0}^{1} \frac{\eta^{-\alpha} f(\eta)d\eta}{\eta-\xi}$$
 (\$>0)

Отсюда по формуле обращения Абеля с учетом (1.12) будем иметь

$$= 2\cos^{2}(\pi\mu \ 2) \int_{0}^{\pi} \frac{\sin(\pi\mu)}{(\pi - x)} \int_{0}^{\pi} u^{2} p_{0}(u) du \int_{0}^{\pi} \frac{\gamma_{0} - dx}{(\pi - x) - (u - x)} dx$$
(3.6)

Легко показать, что

$$J_{\mu}(\xi, u) = \int \frac{\frac{\Gamma(\mu)\Gamma(1-\mu/2)}{\Gamma(1+\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)}{\frac{\Gamma(\mu-1)\Gamma(1-\mu/2)}{\Gamma(\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)} = \frac{\frac{\Gamma(\mu)\Gamma(1-\mu/2)}{\Gamma(\mu-1)\Gamma(1-\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)}{\frac{\Gamma(\mu-1)\Gamma(1-\mu/2)}{\Gamma(\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)} = \frac{\frac{\Gamma(\mu)\Gamma(1-\mu/2)}{\Gamma(\mu-1)\Gamma(1-\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)}{\Gamma(\mu-1)\Gamma(1-\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)}{\Gamma(\mu-1)\Gamma(1-\mu/2)} \frac{1}{u} \Gamma(1, 1-u/2; 1+\mu/2; -)$$

Оченидно, что (3.6) удовлетвориет условню (1.16).

Обращаясь к вопросу определения пормальных напряжений вне разреза, заметим, что сопоставление (1.15), (3.1) и (3.5) даст

$$z_0(\xi) = \frac{\sin(\pi\mu/2)}{\pi} |\xi|^{-\mu/2} \int_0^{\infty} \frac{\eta^{\mu/2} \rho_0(\eta) d\eta}{\eta - \xi} \quad (\xi < 0)$$

Перейдя к прежним переменным, отсюда получим

$$z(x) = \frac{\sin(\pi \mu/2)}{\pi} |x|^{-\mu/2} \int_{0}^{x} \frac{z^{\mu/2} p(s) ds}{s - x} \quad (x < 0)$$
 (3.7)

Итак, нормальные разрушающие напряжения вне полубесконечного разреза, взятые с обратным знаком, даются формулой (3.7).

Для коэффициента интенсивности пормальных напряжений на конце разреза из (3.7) находим

$$K_0 = -\lim_{x \to \infty} ||x|^{\mu/2} \, \sigma(x)| = \frac{\sin(\pi \mu/2)}{\pi} \int_0^{\infty} s^{-\mu} \, p(s) ds \tag{3.8}$$

В предельном случае p→1 (3.8) соппадает с известным результатом {19].

4. Формулами (2.14) и (3.8) дается аспмитотичекое поведение пормальных напряжений вблизи копценых гочек разрезон. При помощи известного метода [20] получим такие же формулы для вертикальных обобщенных перемещений. При этом для простоты ограничимся первой задачей и расемотрим симметричное загружение берегов конечного разреза: p(-x) = p(x)

Тогда согласно (2.14)

$$K_1 = K_2 = K = \frac{(2a)^{1-\alpha/2} \sin(\pi\mu/2)}{\pi} \int_0^{\infty} \frac{\rho(s)ds}{(a^2 - s^2)^{1-\mu/2}}$$
(4.1)

и можем записать, что $(H(x)- oldsymbol{\phi} oldsymbol{y} oldsymbol{n} oldsymbol{\phi} oldsymbol{z})$

$$\sigma(x) \simeq \sigma_1(x) = -KH(x-a)|x-a|^{-\mu/2} \quad x \to a = 0 \tag{4.2}$$

С другой стороны, исходя из (1.3), булем иметь

$$\left|\frac{v_*(x)}{A}\right|^2 = w(x) = \int_{-\infty}^{\infty} \frac{q(s)ds}{|x-s|^{1-s}} \quad (-\infty < x < \infty)$$
 (4.3)

Далее, введя в рассмотрение образы Фурье

$$[\overline{w}(\lambda), \overline{q}(\lambda), \overline{\sigma}_1(\lambda)] = \langle |w(x), q(x), \sigma_1(x)| e^{ix} dx$$

которые в общем случае трактуются в рамках теории обобщенных функций, соотношение (4.3) представим в виде

$$w(r) = 2\Gamma(\mu)\cos(\pi\mu/2)|r|^{-\alpha}q(r)$$

откула вытекает, что [20]

$$w(\lambda) = w_a(\lambda) - 2\Gamma(y)\cos(\pi y/2)|\lambda| - (|\lambda| - \infty)$$

Ho

$$\tau_1(t) = - \hbar e^{it} \Gamma(1 - \mu 2) |\sin(-\mu 4) - i\cos(\pi \mu 4) \sin t| |t|^{\alpha/2 - 1}$$

При этом была пенользована таблица образов Фурьс некоторых обобщенных функций из [20] (с. 43). Опять воспользованшись этой таблицей, окончательно находим

$$w(x) = \begin{cases} 2K \frac{(n)\Gamma(1-p/2)}{\Gamma(1+p/2)} \cos(\pi p/2)(a-x)^{1/2}, & x \to a \to 0 \\ 0, & x \to a \to 0 \end{cases}$$
(4.4)

где $w_a(x)$ обратное преобразование Фурье функции $w_a(\lambda)$. Следовательно,

$$w_{+}(x) = |v_{+}(x)| - A^{*} w_{a}(x) \quad x - a \tag{4.5}$$

В предельном случае в —1 формулы (4.2) и (4.4) — (4.5) переходят и известные асимптотические формулы для пормальных напряжений и вертикальных перемещений и окрестности края трещины на ее продолжении [21].

Отметим, что если в (4.3) A^i заменить на 0 < v и p—на 1 = v гд 0, определенная константа [5], то обобщенные перемещения $[v,(x)]^2$ совпадут с истинными вертикальными перемещениями граничных гочек линейно-упругой верхней полуплоскости, модуль упругости которой изменяется по степенному закону

$$E(y) = E_y y \qquad (0 \leqslant y \leqslant 1) \tag{4.6}$$

Таким образом, обобщенные перемещения можно истолковать и в указанном смысле.

Теперь запишем уравнение энергетического баланса [21, 22]

$$dU = -d\Gamma \tag{4.7}$$

лля тела с распространяющимся разрезом (трещиной), выражающее условие локального разрушения тела, Здесь С—потеничальная эпертия тела к моменту разрушения, а П—поверхностиви эпертия разрушения, причем

$$d\Pi = 2 da$$

где т плотность поверхностной энергии. Следовательно, уравнение (4.7) можно представить в виде

$$\frac{\partial U}{\partial a} = G = -2\gamma \tag{4.8}$$

тте G - интенсивность освобождающейся эпергии (0.13) (приток (нертин в вершину трещины), расходуемой на его разрушение. 26

Для вычисления G воспользуемся вляестным подходом Приниа [21, 22], предполагая, что конец треници x=a м честию по подходом обращения Δa . Тогда

$$G = \lim_{\Delta a \to 0} \frac{1}{2\Delta a} \int_{0}^{2a} \gamma(x) 2w \cdot (x) dx$$

так как $a_y = -a(x)$. Воспользовавшись асимптотическими формулами (4.2), (4.4)—(4.5), булем иметь

$$G = -2K^2A^n \frac{\Gamma(\mu)\Gamma(1-\mu/2)}{\Gamma(1+\mu/2)} \cos(\pi\mu/2) \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_0^{\infty} \left(\frac{\Delta a - x}{x}\right)^{-1} dx$$

Вычислив входящий сюда элементарный витеграл, окончательно получим

$$G = -2h^{2}A^{2}\cos(\pi\mu/2)\Gamma(\mu)\Gamma^{2}(1-\mu/2) \tag{4.9}$$

Сопоставление (4.8) и (4.9) показывает, что в данном случае анергетический критерий Гриффитса, когла G достигает критической величины $G_c = \text{солst}$, эквивалентен силовому критерию Иряниа, когда K достигает критической величины $A_c = \text{const}$.

Рассмотрим частима случай, когда $p(x) = p_0 = \text{const.}$ Тогда из (4.1) находим

$$K = 2^{u/2-1} \sin(\pi \mu/2) p_0 a^{u/2} |\pi\Gamma(\mu)|^{-1} \Gamma^2(\pi/2) \tag{4.10}$$

Сопоставляя (4.8) и (4.9), для предельной разрушающей пагрузки получим следующее выражение:

$$\rho_0 = \left\lfloor \frac{2^{2-\mu_1}}{A^2 \cos(\pi \mu \ 2)\Gamma(\mu)a^2} \right\rfloor = \frac{\Gamma(\mu)}{\Gamma(\mu \ 2)}$$

которое при перехоте к линейно-упругой влоскости (указанным выше способом), состоящей из двух полуплоскостей, модули упругости которых по их глубние изменяются по степенному закону (4.6), совпадает с формулой (4.7) из [3].

Согласно сказанному в первом пункте, в (4.10) и может быть заменен на 2p/(p-1), что даст

$$K = 2^{-1/(n-1)} \sin \left[\pi \mu_{\nu}(\mu - 1) \right] + 2^{-(n-1)} \left\{ -\Gamma \left[2\mu (n-1) \right] \right\}^{-1} \Gamma^{1} \left[\mu/(\mu - 1) \right]$$

В таблице даны приведенные значения коэффициситов интенсивности

$$L = K(p_0 a^{s/2})^{-1}, \quad L = K[p_0 a^{s/2}]^{-1}$$

при различных р.

Значения 4.									
μ L L	0.95	0.65 0.93 0.85		0.75 0.87 0.81	0 -80 0 -64 0 -79	0.85 0.81 0.76	0.90 0.79 0.74	0.95 0.74 0.73	1 0.71 0.71

По мере приближения $\mathfrak p$ к единице значения L и $\overline L$ исе меньше и меньше отличяются друг от друга

ՎԵՐՋԱՎՈՐ ԿԱՄ ԿԻՍԱՍՆՎԵՐՋ ՃԱՐՈՎ ԻՈՒԼԱՑՎԱԾ ԵՎ ԱՍՏԻՃԱՆԱՅԻՆ ՕՐԵՆՔՈՎ ՉԵՎԱՓՈԽՎՈՂ ՀԱՐԹՈՒԹՅԱՆ ԼԱՐՎԱԾԱՏԻՆ ՎԻՃԱԿԻ ՄԱՍԻՆ

II. If, Ifwieduesikh

Ամփոփում

Հաստատաված սողջի ոչ դծային տեսուիյան դրվածքով, հրր լարումների և դենորմացիաների միջև կախվածուիլունը արվում է աստիճանային օրենսով, առաջին մոտավորությամբ կամ առաձգականության դծային տեսուիյան դրվածքով, երբ հարիության առաձգականության մողուլը ըստ ուղղաձիղ կոորդինատի փոփոխվում է աստիճանային օրենքով, դիտարկմում
հն վերջավոր և կիստանվերջ ճարերով թուլացված հարիության լարվածային վիճակի վերաբերյալ ինդիրները։ Որսշիլ ինտեդրո-դիֆերենցիալ Հադասարումների լուծումները կառուցված են փակ տեսքով՝ հավասարումնար կոմպլերս տիրույի շարունակելու կառլեմանի մեթոդով ձաքերի ծայսակնանին շրջակայթում նորմալ լարումների և տեղափոխությունների համար ստացված են ասիմպասարկ բանաձևեր, որոնց օդնությունների հավառ է ճաքերի տարածման պայմանը։ Նույս է տրված Գրիֆիտսի էներդետիկ և Իրվինի տժային հայտանիչների տամարժերությունը։

ON STRESSED STATE OF PLANE STRAINED WITH A DEGREE LAW, WEAKENED BY FINITE OR SEMIFINITE CROSS SECTION

S. M. MCHITARIAN

Summary

By means of the Karleman method of continuation closed solutions of mixed problems about stressed state of plane strained with a degree law with sections of finite or semifinite length are built into the complex plane. The equivalence of Griffit's energetic criterion and forced criterion is shown.

ЛИТЕРАТУРА

- 1. Аругюнян Н. Х. Плоская контактная задача теории ползучести.—ПММ, 1959, т. 23, яып. 5, с. 901—924.
- 2. Арутюнян Н. X. Манукян М. М. Контохтная задача теории полоучести с учетом сил трении.—ПММ, 1963, т. 27, вып. 5, с. 813—820.
- 3. Попон Г. Я., Радиолло М. В. К теории трешин и неоднородных или ортотропных средах.—ПМ, 1975. т. 11, имп. 5, с. 36—44.
- Нальщин Н. В.: Приварников А. К. О напряженном состоянии волле щеля в пространстие с переменным модулем упругости.—ПМ, 1967. т. 3. вып. 9. с. 138— 141.
- Полов Г. Я. Контактные задачи для линейно-деформируемого основания. Киев— Одесса: Вища Нікола, 1982. 168 с.

- 6. Попол Г. Я. Концентрация упругох напряжений поэле штампов, разрезов, тонких включений и подхренлений. М.: Наука, 1982. 341 г.
- 7. Равнев В. Л., Проценко В. С. Контактные задачи зеории упругости для неклассических областей. Киев: Наукова думка 1977—235 с
- Арутован И. Х., Александров В. М. Некоторые попросы механики ледяного покрова, Тезисы докладов Всесоюзной конференции по теории упругости, Ереван-Изд-во АП Арм. ССР, 1979, 399 с.
- Аругюнин И. Х., Сумбатян М. А. Плосков задача теории ползучести для слоя.— Изв. АН АрмССР, Механика, 1980, т. 33, № 3, с. 18—28.
- Александров В. М., Сумбатян М. А. Об одном решении контактной задачи нелинейной установиншейся полаучести иля полупло кости — МТТ, 1983. № 1. с. 107—113.
- Гольдштейн Р. В. К пространственной задаче теории упругости для тел с илоскими трешинами произвольного разрыва. М.: Ин-т проблем механики АН СССР, Преприят № 122, 1979. 66 с.
- Rice J. R., Rosengren G. F. Plane strain deformation near a crack tip in a power-law hardening materia. J. Mech. and Phys. Solids, 1968, v. 16, N. 1, p. 1—12.
- 13 Гахов Ф. Д. Краевые задачи. М.: Наука, 1977, 610 с.
- 14. Carleman T. Über die Abelsche Integralgleichung mit Konstanten integrationsgrenzen.-Math. Z., 1922, Bd. 15. Helt 1.2. s. 111 - 120.
- 15. Сакалок К. Д. Обобщенное интегральное уравнение Абеля.—ДАН СССР, 1960. т 131, № 4, с. 748—751
- Градштейн И. С., Рыжик И. М. Таблины интегралов, сумм. рядом и произведения. М.: Наука, 1971. 1108 с.
- Бейтмен Г., Эрдейи А. Высшие транспендентные функции. Т. І. М.: Наука, 1973.
 296 с.
- Люк Ю. Специальные математические функции и их аппроксимации. М.: Мир. 1980 608 с.
- Мусхелишенли Н. И. Некоторые основные задачи математической теории упругости, М.: Наука, 1966, 708 с.
- 0. Lighthill M. J. Introduction to Fourier analysis and generalised functions. Cambridge: at the University press, 1959, 79 p.
- 21. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с.
- Партов В. З., Морозов Е. М. Механика упруго-пластического разрушения. М.: Наука, 1974. 416 с.

Институт механики АН Армянской ССР Поступила в редакцию 23 VI.1983