XXXIV, No 6, 1981

Механика

Э. Х. ГРИГОРЯН

ОБ ОДНОЙ МОДИФИКАЦИИ МЕТОДА ПЛОСКИХ ВОЛН В ПЛОСКИХ ЛИНЕЙНЫХ ЗАДАЧАХ МЕХАНИКИ СПЛОШНОЙ СРЕДЫ

В работе методом плоских воли получено решение уравнений однородной среды при наличии сосредоточенных импульсов. При решении использовано известное представление δ-функции в виде разложения на плоские волны [1, 2]. Это разложение δ-функции было дано в работе [3], которое затем применялось к решению задачи Коши для гиперболяческих уравнений и к построению фундаментальных решений эллиптических уравнений Аналогичные результаты получены также в монографии [4], где при решении соответствующих задач использовано представление непрерывном функции в виде разложения по некоторым плоским волнам.

В настоящей работе проведена элементарная модификация в представления б-функции в виде разложения на плоские волиы, которая позволяет в плоской задаче определить фундаментальное решение для уравнений магнитоупругости достаточно простым образом. Далее, с номощью такой модификации, методом плоских воли получается решение задачи Ламба для упругой среды.

Задачи о сосредоточенном импульсе для безграничной магнитоупругой среды другими методами исследовались в работах [5, 6].

Решение задачи Ламба для упругой среды методом интегральных преобразовании содержится в [7], а методом функционально-инвариантных решений Смирнова-Соболена — в [8].

1. Требуется оприделить решение системы уравнений

$$c_{1} \frac{\partial^{2} u^{(1)}}{\partial x_{1}^{2}} = \frac{\partial^{2} u^{(1)}}{\partial x_{2}^{2}} + e^{2} \frac{u}{\partial x_{1} \partial x_{2}} + \frac{1}{p} P(x_{1}) \delta(x_{2}) + \frac{\partial^{2} u^{(1)}}{\partial t^{2}}$$

$$c^{2} \frac{\partial^{2} u^{(2)}}{\partial x_{1}^{2}} + c^{2} \frac{\partial^{2} u^{(2)}}{\partial x_{2}^{2}} + c^{2} \frac{\partial^{2} u^{(1)}}{\partial x_{1} \partial x_{2}} + \frac{1}{e^{2}} O(x_{1}) \delta(x_{2}) \delta(t) = \frac{\partial^{2} u^{(1)}}{\partial t^{2}} (1.1)$$

пон условии

$$u^{(1)}(x_1, x_2, t) = 0, \quad \frac{\partial u^{(1)}(x_1, x_2, t)}{\partial t} = 0, \quad u^{(2)}(x_1, x_2, t) = 0, \quad \frac{\partial u^{(2)}(x_1, x_2, t)}{\partial t} = 0$$

$$\text{inpu} \quad t < 0 \tag{1.1'}$$

где $c^2 = c_1^2 - c_2^2$, $c_1^2 = (i + 2G)/\rho$, $c_2^2 = G/\rho$, $c_3^2 = G/\rho$, $c_4^2 = c_4^2 + a_4^2$, $a^2 = \mu H^2/4 = \rho$, λ и G — постоянные Ляма, ρ — плотность упругой среды,

 μ — магнитная проницаемость среды, H_{*} — интенсивность внешнего магнитного поля, a — скорость Альфвена.

Уравнения (1.1) описывают движение идеально проводящей упругой среды при наличии однородного магнитного поля $H(H_0, 0, 0)$, когда в среде действуют объемные силы в виде сосредоточениых импульсов, в случае преиебрежения токами смещения [5, 6].

Для решения задачи (1.1), (1.1) пользуемся представлением $\delta(x_1) \, \delta(x_2)$ в виде разложения на плоские волиы [1]

$$\delta(x_1) \delta(x_2) = -\frac{1}{4\pi^2} \int_{|\zeta_1| = 1} \frac{d\zeta}{|(\zeta_1 x_1 + \zeta_2 x_2)^2}, \ \zeta_1^2 + \zeta_2^2 = 1, \ |\zeta| = \sqrt{\zeta_1^2 + \zeta_2^2} \quad (1.2)$$

Имея в виду, что С с с с 1, (1.2) можно записать в виде

$$\hat{\epsilon}(x_1) \hat{\epsilon}(x_2) = -\frac{1}{4\pi^2} \int_{-1}^{1} \left| \frac{1}{(\zeta_1 x_1 + 1/1 - \zeta_1^2 x_2)^2} + \frac{1}{(\zeta_1 x_1 - 1/1 - \zeta_1^2 x_2)^2} \right| \times \frac{d\zeta_1}{1/1 - \zeta_1^2}$$

$$(1.3)$$

На (1.3) после продолжения 🖫 на всю действительную ось получим

$$\delta(x_1) \, \delta(x_2) = -\frac{1}{2\pi^2} \, \text{Re} \left[\int_{-1}^{+\infty} \frac{1}{(\zeta_1 x_1 + \zeta_2 x_2)^2} \, \frac{d\zeta_1}{\sqrt{1 - \zeta_1^2}} \right], \quad \zeta_2 = \sqrt{1 - \zeta_1^2} \quad (1.4)$$

Очевидно, что под 1 $1-\zeta_1^2$ понимается та ветвь втой функции, которая положительна при положительных мнимых значениях. Такую ветвы можно выбрать, если провести разрез на отрезке (-1, 1). Для такой ветви 1 $1-\zeta_1^2$ положительно мнима при $\zeta_1 < -1$ и отрицательно мнима при $\zeta_1 > 1$.

Эта элементарная модификация в представлении $\delta(x_1)$ $\delta(x_2)$ (1.4) дает возможность в дальнейшем без каких-либо трудностей получить решение задачи (1.1), (1.1) в виде записи через элементарные функции.

Теперь приступим к решению задачи (1.1), (1.1)'. Для атого сначала определям решение однородного уравнения (1.1) вида

$$u_{i}^{(1)} = A / (i + \frac{1}{2}x_{1} + \frac{1}{2}x_{2}), \qquad B_{i} f(i + \frac{1}{2}x_{1} + \frac{1}{2}x_{2}) \quad (-\infty < \frac{\pi}{4} < +\infty)$$

Под 1/1 💢 понимается вышеуказанная ветвь этой функции.

После подстановки атих функций в (1.1) и требования, чтобы они удовлетворяли однородным уравненням, для определения A_{λ} , B_{λ} получим систему уравнення

$$(c_1^2\zeta_1^2 + c_2^2\zeta_2^2 - r^2) A_1 + c_1^2\zeta_1^2 B_2 = 0$$

$$= (c_1^2\zeta_1^2 + c_1^2\zeta_2^2 - r^2) B_2 = 0$$

Для того, чтобы получить нетривнальное решение этой системы, должно иметь место «ледующее:

$$(c_1 + c_2) + c_2^2 c_3^2 + a^2 c_4^{2r_2} = 0$$

Решив это уравнение, получим его кории в следующем виде:

$$\frac{1}{1 \cdot 2} \sqrt{c_2 + c^2 - (-1)^j \sqrt{(c_1^2 - c_2^2)^2 - 4 a^2 c^2 \zeta_i}}$$

$$\iota_3 = -\iota_3, \ \iota_4 = -\iota_6, \ (j = 1, 2)$$

Очевидно, что $\zeta_1 = \zeta_1' = \pm (c : -c :)/2\alpha c$ будут точками ветвления внутреннего радикала в выражениях λ_i (ζ_1), (j=1,2).

Фиксируем значения внутреннего радикала так, как это сделано относительно функции) 1. Очевидно, что в этом случае падо провести разрез, соединяющий с . В разрезанной указанным образом плоскости точка $-\frac{1}{1} = -\frac{1}{1} c_2 c_3 / ac$ будет точкой ветвления для $\frac{1}{1} (\zeta_1)$, а $\zeta_1^{(2)} = \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} + \frac{1}{1} - \frac{1}{1} + \frac{1}{1} +$

Таким образом, общее решение однородного ураннения в рассматриваемом классе функций будет иметь вид

$$u^{(1)} = A_1 \int (t_1 t + t_1 x_1 + t_2 x_2), \quad u^{(2)} = B_2 \int (t_1 t + t_1 x_1 + t_2 x_2) \quad (j = 1, 2, 3, 4)$$

Здесь и в дальнейшем под повторяющимся индексом понимается суммирование.

Имеют место следующие соотношения:

$$B_{ij} = -\frac{c_1^2 \zeta_1^2 + c_2^2 z^2 - c_1^2}{c_1} A \qquad (i = 1, 2, 3, 4)$$
 (1.5)

Теперь построим решение задачи (1.1), (1.1). Имея в виду (1.4), решение задачи (1.1), (1.1) ищем в виде

$$a^{(k)} = -\frac{1}{2\pi^2} H(t) \operatorname{Re} \left[\int_{-1}^{\infty} d^{(k)}(\zeta_1, x_1, x_2, t) \frac{d\zeta_1}{\sqrt{1-\zeta_1^2}} \right] \quad (k = 1, 2)$$

Здесь H(t) — функция Хевисайда.

Подставив $u^{(1)}$, $u^{(2)}$ в систему уравнений (1.1) и потребовав, чтобы она удовлетворилась, в результате получаем следующее:

$$\delta_{jj} A_{kj} = 0, \quad \lambda_j A_{kj} = \frac{P}{P}, \quad \delta_{jj} B_{kj} = 0, \quad \lambda_i B_i = \frac{Q}{P} \ (j = 1, 2, 3, 4)$$
 (1.6)

$$f(x_1x_2+x_3)=-\frac{1}{x_1x_1+x_2}+C$$

Эдесь С — произвольная постоянная, δ_{ij} — символы Кронекера. Разрешив систему уравнений (1.6) и (1.5), для A_i и B_{ij} получим следующие выражения:

$$A_{1} = \frac{P}{2} \frac{c_{1}^{2}\zeta_{1}^{2} + c_{2}^{2}\zeta_{2}^{2} - \lambda_{1}^{2}}{2r^{2} \lambda_{2} \left(r_{1}^{2} - r_{2}^{2}\right)} = \frac{Q}{2r^{2}} \frac{1}{r_{2}\left(r_{1}^{2} - r_{2}^{2}\right)}, A_{r_{1}} - A_{r_{2}}$$

$$B_{1} = \frac{Q}{2r^{2} \lambda_{1}\left(r_{1}^{2} - r_{2}^{2}\right)} + \frac{Q}{2r^{2} \lambda_{1}\left(r_{1}^{2} - r_{2}^{2}\right)}, B_{1} - B_{1}$$

$$B_{2} = \frac{Q}{2r^{2} c_{1}^{2} + c_{2}^{2}} + \frac{r_{2}^{2}}{r_{2}\left(r_{1}^{2} - r_{2}^{2}\right)} - \frac{P}{2r^{2} c_{1}^{2} - r_{2}^{2}}, B_{1} = -B_{1}$$

Таким образом, решение задачи (1.1), (1.1) будет иметь пид

$$u^{(1)} = \frac{H(t)}{2\pi^{2}} \operatorname{Re} \left[\int_{-1}^{\infty} A_{i,j} \left(\frac{1}{i,j+\zeta_{1}x_{1}+\zeta_{2}x_{2}} + \frac{1}{i,j+\zeta_{1}x_{1}+\zeta_{2}x_{2}} \right) \frac{d\zeta_{1}}{|I-\zeta_{1}|} \right]$$

$$(1.7)$$

$$u^{(2)} = \frac{H(t)}{2\pi^{2}} \operatorname{Re} \left[\int_{-1}^{\infty} B_{i,j} \left(\frac{1}{i,j+\zeta_{1}x_{1}+\zeta_{2}x_{2}} + \frac{1}{i,j+\zeta_{1}x_{1}+\zeta_{2}x_{2}} \right) \frac{d\zeta_{1}}{|V|-\zeta_{1}^{2}} \right]$$

$$(j-1,2)$$

Нетрудно видеть, чт. подынтегральные функции имеют следующие точки ветвления: $\zeta_1 = 1$, $\zeta_2 = 1$. Следовательно, эти функции, рассматриваемые как функции комплексного переменного, вне действительной оси, кроме полюсов, других особых точек не могут иметь.

С аругой стороны, легко видеть, что волим $a, l + \zeta_1 x_1 + \ldots = 0$ будут уходящими от начала координат (0, 0) при lm > 0 только, если $x_2 < 0$, а волим $l, l - \zeta_1 x_1 + \ldots x_2 = 0$ будут уходящими от (0, 0) при $lm \zeta_1 > 0$ только, если $x_2 > 0$. Учитывая это, после вычислений интегралов из (1.7) стандартным методом теории вычетов, имея при этом в виду, что действительная ось должна обходить особые точки подынтегрального выражения сверху, для $x_2 < 0$ получим

$$u^{(1)} = \frac{H(t)}{\pi} \operatorname{Re} \left[\frac{iA_{-j} \left(\zeta_{1}^{(j)} \right)}{x_{j}^{*} \left(\zeta_{1}^{(j)} \right) \left(\zeta_{2}^{(j)} + \zeta_{2}^{(j)} x_{1} - \zeta_{2}^{(j)} x_{2}} \right]} \right]$$

$$u^{(j)} = \frac{H(t)}{\pi} \operatorname{Re} \left[\frac{iB_{k_{j}} \left(\zeta_{1}^{(j)} \right)}{x_{1}^{*} \left(\zeta_{1}^{(j)} \right) \left(\zeta_{2}^{(j)} + \zeta_{2}^{(j)} x_{1} - \zeta_{2}^{(j)} x_{2}} \right]} \right]$$

где 🥨 определяются на ураннений

$$\lambda_1 \binom{r(j)}{r} t + \xi_1^{(j)} x_1 + \xi_2^{(j)} x_2 = 0 \quad (j = 1, 2)$$

2. Рассмотрим колебания упругой полуплоскости, на границе которой приложен сосредоточенный импульс (задача Ламба)

$$a_0 \frac{\partial^2 u^{(1)}}{\partial x_1^2} + b_0 \frac{\partial^2 u^{(2)}}{\partial x_2^2} + \frac{\partial^2 u^{(2)}}{\partial x_1} \partial x_2 = \frac{\partial^2 u^{(1)}}{\partial x_2^2}$$

$$b_1 \frac{\partial^2 u^{(2)}}{\partial x_1^2} + a_0^2 \frac{\partial^2 u^{(2)}}{\partial x_2^2} + \frac{\partial^2 u^{(1)}}{\partial x_1} \partial x_2 = \frac{\partial^2 u^{(2)}}{\partial x_2^2}$$

$$(2.1)$$

$$\begin{bmatrix} a_0^{\alpha} \frac{\partial u^{(2)}}{\partial x_2} + (a_0^2 - 2b_0^2) \frac{\partial u^{(1)}}{\partial x_1} \end{bmatrix}_{x_1 = 0} = -\frac{P}{2G} \delta(x_1) \delta(x_2)$$

$$\begin{bmatrix} \frac{\partial u^{(1)}}{\partial x_2} + \frac{\partial u^{(2)}}{\partial x_1} \end{bmatrix}_{x_1 = 0} = -\frac{Q}{2G} \delta(x_1) \delta(x_2) \tag{2.1}$$

$$u^{(1)} = 0$$
, $\frac{\partial u^{(1)}}{\partial x_1} = 0$, $u^{(2)} = 0$, $\frac{\partial u^{(2)}}{\partial x_2} = 0$ upi $x_3 < 0$ (2.1)"

гле $a_1^4=c_1^4/c^3$, $b_0=c_2^3/c^2$, $c^2=c_1-c_2$, $x_1=ct$, t - переменная, характеризующая премя.

Для решения рассматриваемой задачи, как и выше, $\delta(x_i) \, \delta(x_i)$ представим в виде

$$\delta(x_1) \delta(x_3) = -\frac{1}{2\pi^2} \operatorname{Re} \left[\int_{-\pi}^{\pi} \frac{1}{(\zeta_1 x_1 + \sqrt{1 - \zeta_1^2} x_3)^2} \frac{d\zeta_1}{\sqrt{1 - \zeta_1^2}} \right]$$
 (2.2)

причем под | 1—— понимается та ветвь этой функции, что и в первом пункте.

Решение системы уравнений (2.1) ищем в виде

$$u_{\lambda}^{(1)} = A_{\lambda} f(x_1 x_1 + i x_2 + i \overline{1 - x_1^2} x_3), \quad u_{\lambda}^{(2)} = B_{\lambda} f(x_1 x_1 - \lambda x_2 + i \overline{1 - x_2^2} x_3)$$
(2.3)

Под $\sqrt{1-\zeta_1^2}$ понимается та ветин, что и в (2.2).

Подставляя (2.3) в (2.1), для определения A_{λ} , B_{λ} получим систему уравнений

$$(a^{2}\zeta_{1}^{2} - \zeta_{2}^{2} + b^{2}) A_{\lambda} - C_{B} = 0$$

$$- \lambda_{1} A_{\lambda} + (b^{2}\zeta_{1}^{2} - \zeta_{2}^{2} + b^{2}a^{2}) B_{\lambda} = 0$$

Нетрудно видсть, что рассматриваемая система будет иметь нетривиальное решение при

$$\lambda_{1} = \frac{\sqrt{a_{0}+1}}{a_{0}} \sqrt{\frac{1}{a_{0}^{2}+1} - \zeta_{1}^{2}}, \ \lambda_{2} = \frac{\sqrt{b_{1}+1}}{b_{0}} \sqrt{\frac{1}{b_{0}^{2}+1} - \zeta_{1}^{2}}$$

$$\lambda_{3} = -\lambda_{1}, \ \lambda_{4} = -\lambda_{2}$$

Функции 1 выберем так, чтобы они были положительными при положительно миимых эначениях ... Тогда решение системы уравнении (2.1) в рассматриваемом классе функций будет иметь вид

$$u^{(1)} = A_{\lambda_1} f(\zeta_1 x_1 - \iota_1 x_2 + \zeta_2 x_3), \quad u^{(2)} = B_{\lambda_1} f(\zeta_1 x_1 - \iota_1 x_2 + \zeta_2 x_3)$$

$$B_{i,j} = \frac{a_0^2 \zeta_1^2 - \zeta_2^2 + \lambda_i^2 b_0^2}{h_i \zeta_1} A_{i,j} \quad (j = 1, 2, 3, 4)$$
 (2.4)

Так как в рассматриваемой задаче $x_i > 0$ и в силу того, что x_i , $(j=1,\ 2)$ положительны при положительно мнимых значениях x_i , то отсюда следует, что наше решение будет представлять уходящую волну, если взять $A_{i,j} = 0$. Следовательно,

$$u^{(1)} = A_{1,j} f(\zeta_1 x_1 - \zeta_2 x_2 - \zeta_2 x_3), \quad u^{(1)} = B_{1,j} f(\zeta_1 x_1 - \zeta_1 x_2 + \zeta_2 x_3) \quad (j = 1, 2)$$

Имея в виду (2.2), решение задачи (2.1), (2.1), (2.1) ищем в пиде

$$u^{(j)} = -\frac{1}{2\pi^2} \operatorname{Re} \left[\int_{-\infty}^{+\infty} u^{(j)} (\zeta_1, x_1, x_2, x_3) \frac{d\zeta_1}{\sqrt{1-\zeta_1^2}} \right] \quad (j = 1, 2)$$

Подставляя $u^{(1)}$, $u^{(2)}$ в граничное условие (2.1)', после некоторых выкладок получим следующее;

$$\left(2\zeta_{1}^{2} - \frac{\zeta_{2}^{2}}{b_{0}^{2}}\right) A_{\lambda_{1}} + 2\zeta_{1}^{2} A_{\lambda_{2}} = \frac{P\zeta_{1}}{2cb_{0}^{2}}$$

$$2\lambda_{1}\lambda_{2}A_{\lambda_{1}} - \left(2\zeta_{1}^{2} - \frac{\zeta_{2}^{2}}{b_{0}^{2}}\right) A_{\lambda_{2}} = \frac{Q\lambda_{2}}{4cb^{2}}$$

$$f\left(\zeta_{1}x_{1} + \zeta_{2}x_{3}\right) = -\frac{1}{\lambda_{1}x_{1} + \lambda_{2}x_{3}} + N$$
(2.5)

Здесь А произвольная постоянная.

Далее на (2.4) и (2.5) получим

$$A_{1} = \frac{2}{\Delta (\zeta_{1})} \frac{2^{\zeta_{1}^{2}}}{\Delta (\zeta_{1})} - \frac{P}{9cb_{0}^{2}} \frac{(\zeta_{2}^{2}b_{0}^{-2} - 2\zeta_{1}^{2})}{\Delta (\zeta_{1})} + A_{1}^{0}$$

$$A_{1} = \frac{2}{\sqrt{cb_{0}^{2}}} \frac{1}{\Delta (\zeta_{1})} - \frac{P}{9cb_{0}^{2}} \frac{L_{2}(\zeta_{2}b_{0}^{-2} - 2\zeta_{1}^{2})}{\Delta (\zeta_{1})} + A_{1}^{0}$$

$$B_{L_{1}} = -\frac{L_{1}}{\zeta_{1}} (A_{1} - A_{1}^{0}) + B_{L_{1}}^{0} B_{L_{1}} = \frac{\zeta_{1}}{L_{2}} (A_{1} - A_{1}^{0}) + B_{L_{2}}^{0}$$

$$A_{1}^{0} = c_{1}^{2} \delta (\zeta_{1} - \zeta_{1R}) + c_{2}^{2} \delta (\zeta_{1} + \zeta_{1R}), A_{1}^{0} = -\frac{(2^{c_{2}^{2}} - c_{2}^{c_{2}^{2}} h_{0}^{-2})}{2L_{2R}^{2} c_{1R}} A_{1}^{0}, \zeta_{2R} = 1 \frac{1}{1 - \zeta_{1R}^{2}}$$

$$\Delta (\zeta_{1}) = (2^{c_{1}^{2}} - c_{2}^{2} b_{0}^{-2})^{2} + 4 L_{1}^{L_{2}} \zeta_{1}^{1}, \qquad = L_{1}^{2} (\zeta_{1R})$$

где A^0 , A^0 удовлетворяют однородным уравнениям системы (2.5), c_1 , c_2 —произвольные постоянные, $a^{-1}(z)$ функция Дирака, а $c_{1R} = c(c^2+c_R^2)^{-1/2}$, где c_R —скорость распространения воли Рэлея, являющаяся корнем уравнения $a^{-1/2} = 0$.

Следовательно, $u^{(1)}$, $u^{(1)}$ будут даваться формулами

$$u^{(1)} = \frac{1}{2\pi^{2}} \operatorname{Re} \left[\int \frac{(A_{1f} - A_{1f}^{0})}{\frac{1}{2}x_{1} - i_{f}x_{2} + i_{2}x_{3}} \frac{d\zeta_{1}}{\sqrt{1 - \zeta_{1}^{2}}} \right] - \frac{1}{2\pi^{2}} \operatorname{Re} \left[\frac{(-1)^{n} L C_{n}}{\frac{1}{2}R(i_{1R}x_{1} + (-1)^{n})^{n} Rx_{2} - (-1)^{n} \zeta_{2R}x_{3}} \right] + N_{1}$$

$$u^{(2)} = \frac{1}{2\pi^{2}} \operatorname{Re} \left[\int_{-\infty}^{+\infty} \frac{(B_{1f} - B_{1f})}{\frac{1}{2}x_{1} - i_{f} x_{2} + \zeta_{2}x_{3}} \frac{d\zeta_{1}}{\sqrt{1 - \zeta_{1}^{2}}} \right] - \frac{1}{2\pi^{2}} \operatorname{Re} \left[\frac{(-1)^{n} M_{1f} C_{n}}{\frac{\zeta_{2R}}{2}(i_{1R}x_{1} + (-1)^{n} h_{1R}x_{2} - (-1)^{n} \zeta_{2R}x_{3})} \right] + N_{2}$$

где $L_1 = 1$, $L_2 = (\zeta_R b_1^2 - 2\zeta_{1R}^2)/2\zeta_{1R}^2$, $M_1 = -h_{1R} \zeta_{1R}^{-1}$, $M_2 = (\zeta_{2R}^2 b_3^2 - 2\zeta_{1R}^2)/2\zeta_{1R}^2 h_{2R}^2$, N_1 , N_2 —произвольные постоянные.

Здесь интегралы понимаются в смысле главного значения по Коши, поскольку подынтегральные выражения имеют простые полюсы в точ-ках $\pm \zeta_{IR}$.

Вычисляя эти интегралы стандартным методом теории вычетов, при этом имея в виду, что действительная ось должна обходить особые точки подынтегрального выражения сверху, получим

$$u^{(1)} = \frac{1}{-1} H(x_3) \operatorname{Re} \left[\frac{i \left(A_{\lambda_j} \left(\zeta_1^{(j)} \right) - A_{\lambda_j}^0 \left(\zeta_1^{(j)} \right) \right)}{\zeta_2^{(j)}} \frac{d}{d\zeta_1} \left(\zeta_1 x_1 - \lambda_j x_2 + \zeta_2 x_3 \right) |_{\zeta_1 = \zeta_1(j)}} \right] - \frac{1}{2\pi^2} \operatorname{Re} \left[\frac{a}{\zeta_{2R}} \frac{A}{(\zeta_{1R} x_1 + (-1)^n h_{jR} x_2 - (-1)^n h_{jR} x_3}}{\zeta_{2R} \left(\zeta_{1R} x_1 + (-1)^n h_{jR} x_2 - (-1)^n h_{jR} x_3} \right)} \right] + N_1$$

$$u^{(2)} = \frac{1}{-1} H(x_3) \operatorname{Re} \left[\frac{i \left(B_{\lambda_j} - B_{\lambda_j}^0 \right) |_{\zeta_1 = \zeta_1 R} \left(\delta_{nn} + (-1)^n M_j C_j \right)}{\frac{d}{d\zeta_1} \left(\zeta_1 x_1 - i_{jR} x_2 - (-1)^n M_j C_j \right)} \right] + N_2$$

$$- \frac{1}{2\pi^2} \operatorname{Re} \left[\frac{-i \left(B_{\lambda_j} - B_{\lambda_j}^0 \right) |_{\zeta_1 = \zeta_1 R} \left(\delta_{nn} + (-1)^n M_j C_j \right)}{\zeta_{2R} \left(\zeta_1 R x_1 - (-1)^n h_{jR} x_2 - (-1)^n \zeta_{2R} x_3 \right)} \right] + N_2$$

где определяются из уравнений

$$\zeta_1^{(j)} x_1 - \iota_j (\zeta_1^{(j)}) x_2 + \zeta_1^{(j)} x_3 = 0 \ (j = 1, 2)$$

Теперь удовлетворив условиям (2.1)", получим решение задачи Ламба в следующем виде:

$$u^{(1)} = \frac{1}{\pi} H(x_3) \operatorname{Re} \left[\frac{i \left[A_{i_j} \left(\xi_i^{(j)} \right) - A_{i_j}^{(i)} \left(\xi_i^{(j)} \right) \right]}{\xi_i^{(j)} x_1 - \xi_i^{(j)} x_2 - \xi_j^{(j)} \lambda_j \left(\xi_i^{(j)} \right) x_2} \right]$$

$$(j = 1, 2)$$

$$u^{(2)} = \frac{1}{\pi} H(x_1) \operatorname{Re} \left[\frac{i \{B_{\lambda_1}(\zeta_1^{(f)}) - B_{\lambda_1}^0(\zeta_1^{(f)})\}}{\zeta_2^{(f)} x_1 - \zeta_1^{(f)} x_2 - \zeta_2^{(f)} \lambda_2(\zeta_1^{(f)}) x_2} \right]$$

Ереванский государственный университет

Поступила 11 VII 1980

է. Խ. ԳՐԻԳՈՐՑԱՆ

ՀԱՐԹ ԱԼԻՔՆԵՐԻ ՄԵԹՈԳԻ ՄԻ ՄՈԳԻՖԻԿԱՑԻԱՅԻ ՎԵՐԱԶԵՐՅԱԼ ՀՈԾ ՄԻՋԱՎԱՅՐԻ ՄԵԽԱՆԻԿԱՅԻ ՀԱՐՔ ԳԾԱՅԻՆ ԽՆԳԵՐՆԵՐՈՒՄ

Ամփովոում

Աշխատանքում հարի ալիքների մենողով ստացված է մադնիսաառածկական ժիջավայրի հավասարումների լուծումը կենտրոնացած իմպուլսների առկայության դնպրում։ Լուծման ընթացրում կատարված է մոդիֆիկացիա Ծ-ֆունկցիայի ըստ հարն ալիքների վերլուծության ներկայացման նկատմամբ։ Նշված մոդիֆիկացիան հնարավորություն է տվել բավականին հեշտ ձևով որոշելու մադնիսաառաձգականության հավասարումների սիստեմի ֆունդամենտալ լուծումը։ Հետադայում, նշված մոդիֆիկացիայի օգնությամբ, հարի ալիքների մենոպով ստացվում է Լամբի խնդրի լուծումը առաձգական միջավայրի համար։

Ed. Kh. GRIGORIAN

ON SOME MODIFICATION OF THE PLANE WAVES METHOD FOR PLANE PROBLEMS IN CONTINUUM MECHANICS

Summary

The solution for equations of magnetoelastic medium under concentrated loads is obtained by the plane waves method. The modification of the known presentation of 5-function in plane wave expansion is carried out in the solution. This modification makes it possible to obtain in a rather easy way the principal solution for magnetoelasticity equations. Then by this modification the solution of Lamb's problem for elastic medium is obtained, using the plane waves method.

ЛИТЕРАТУРА

1. Шилов Г. Е. Математический анализ. Второй спецкурс. М., Изд-во «Наука», 1973.

2. Курант Р. Уравнения с частными производными. М., Изд-во «Мир», 1964.

- Гельфанд И. М., Шапиро Э. Я. Однородные функции и их приложения. Успехи мат. наук. 1955, т. 10, вып. 3 (65).
- 4. Пон Ф. Плоские волны и сферические средине в приложении и дифференциальным уравнениям с частными производными. М., И.А., 1958.
- 5. Багдосн А. Г. Определение фундаментальных решений для уравнений магнитоупругости. Изв. АН Арм. ССР, Механика, 1974, т. 27, № 2.
- 6. Григорян Э. Х. О колейании магнитоупругой среды, возбуждаемой сосредоточенной гармонической силой. Изв. АН Арм. ССР, Механика, 1978, т. 31, № 5.
- 7. Филипов И. Г., Егорьев О. А. Нестационарные колебания и дифракция воли в акустических в упругих средах. М., «Машиностроение», 1977.
- Франк О., Мизес Р. Интегральные и дифференциальные уравнения математической физики. М., ОГИЗ, 1936.