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Abstract. In the paper we discuss the problem of description
of random fields by means of systems of finite dimensional prob-
ability distributions.
We present from a unified point of view a survey of the various
such systems associated with random fields.
Then general system of finite dimensional distributions with a
suitable consistency condition is introduced. The properties, re-
lations with other systems, as well as the problems of existence
and uniqueness of the corresponding random fields are discussed.
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Introduction

In the theory of random fields the crucial role play various systems of fi-
nite dimensional probability distributions generated by a field. Meaningful
statements of the theory can be formulated in terms of such systems and
each of them has its own contribution to the study of the random field.
This is the reason why the problem of description of random fields with the
help of systems of finite dimensional distributions is quite important.
The precise formulation of the inverse problem is: for a system of finite di-
mensional distributions find appropriate consistency conditions under which
there exists a random field generating the system. The problem of unique-
ness of the random field is closely related to the just mentioned.
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Historically the first such system was the Kolmogorov system of (absolute)
finite dimensional distributions which uniquely determines a random field.
Another important systems (specifications) was introduced by R. Dobrushin
in connection with the problem of definition of Gibbs measures in infi-
nite dimensional spaces, see [7]. Specification is a set of finite dimensional
distributions indexed by infinite boundary conditions. In contrast to Kol-
mogorov system a specification in general does not determine the random
field uniquely. In Statistical mechanics the last circumstance is usually in-
terpreted as the presence of a phase transition.
There is a disharmony between the Dobrushin conditions: the existence con-
dition (quasilocality) is imposed on whole specification while the uniqueness
condition is specified for one-point distributions only.
In the works of the second author and S. Dachian (see [3], [4]) this weakness
has been eliminated. A consistent system of one-point distributions was
introduced (one-specification) and shown that this system uniquely deter-
mines a Dobrushin specification and inherits all its main properties.
Thus, in Dobrushin theory it is enough to impose the conditions on the one-
specifications only.
In the paper of the second author and A. Dalalyan [6] a class of systems of
finite dimensional probability distributions with finite boundary conditions
was introduced and studied. As in Kolmogorov case this system uniquely
determines a random field. Moreover, the finite dimensional distributions of
the constructed random field have the explicit form in terms of the initial
system.
The close problems of description of random fields were considered in the
papers by H.-O. Georgii [13], R. Fernandez and G. Millard ([10], [11]),
R. G. Flood and W. G. Sullivan, [12] et al.

The present note have two purposes: first we give the descriptions of men-
tioned systems from a new point of view and then offer a general system of
finite dimensional distributions reduced to the listed ones (as subsystems)
by the appropriate choice of boundary functions and consistency conditions.

1 Preliminaries

In this section we provide some of the concepts, notations and agreements
necessary for the further discussions.

1.1 Configuration space

Let S be a countable set (keep in mind S = Zν though the lattice structure
does not exploit).
For any V ⊂ S we denote the set of all n-point subsets of V by Fn(V ),
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F0(V ) = ∅, and the set of all finite subsets of V by F(V ) = ∪∞n=0Fn(V ).
When V = S, we write Fn,F instead of Fn(S) and F(S).
For any V ∈ F let |V | be the number of elements of V .

Let a finite set X (which elements will be referred as spins) be fixed once
for all. For a non-empty V ⊂ S the set of all mappings x : V → X
(configurations on V ) will be denoted by XV .
If the subset V is finite (|V | = n) then a configuration x ∈ XV will be
called finite (or more precisely, n-configuration).
Let d(x) denotes the domain of x, and c(x) = S \ d(x). Denote by xV the
restriction of x to some V ⊂ d(x), that is d(xV ) = V and the values of these
configurations coincide on V , naimely, xV (s) = x(s), s ∈ V .
If |V | = 1, V = {s}, s ∈ S we always write s instead of {s}.
Obviously, for an s ∈ S, the set Xs = X{s} is a copy of X; in such case the
configuration defined on {s} with a value x will be referred symply as x, if
it not led to a misunderstanding.

The set XS is a topological space with the (Tikhonov) topology (assuming
on X the discret topology). The base of open sets constitute the cylinder
sets Ux, corresponding to finite configurations x:

Ux = {z ∈ XS : z(s) = x(s) for s ∈ d(x)}.

Real-valued function f on XS is called local if there exists V ∈ F such that
f(x) = f(y) whenever xV = yV , and quasi-local if

lim
V ↑S

sup
xV =yV

|f(x)− f(y)| = 0.

The notion of quasi-locality is equivalent to the notion of continuity of func-
tions in the just described topology.

We denote by X (S) = ∪V⊂SXV the set of all configurations and by
XF(S) = ∪V ∈FXV the set of finite configurations.

For any two functions x1, x2 ∈ X (S) with d(x1) ∩ d(x2) = ∅ we denote
by x := x1x2 their concatenation, that is the function with the domain
d(x) = d(x1) ∪ d(x2) and such that xd(xi) = xi, i = 1, 2.
For x ∈ X (S) with d(x) = d1 ∪ d2 where d1 and d2 are disjoint, there is the
representation x as a concatenation x = x1x2, where xi = xdi , i = 1, 2.

Let V ∈ F . Any configuration z with V ⊂ c(z) is called a boundary function
(condition) related to V . The set of all boundary functions related to a
finite V we denote by BV .
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1.2 Probability distributions and random fields

For any V ∈ F , we denote by DV the set of all positive (finite dimensional)
probability distributions on XV , that is for any q ∈ DV supposed∑

u∈XV

q(u) = 1, q > 0.

Sometimes we write qV = q ∈ DV to indicate the volume determining XV .

The usually considered metrics by variation ρV on the set DV is defined by
the formula

ρV (q1, q2) =
1

2

∑
u∈XV

|q1(u)− q2(u)|. (1)

By a random field we understand a probability measure on the Borel σ-
algebra generated by the Tikhonov topology.
There are many systems of finite dimensional distributions (probability mea-
sures on the cylinder sets) induced by the random field by means of which
the random field can be restored.
In constructing of random field models starting from a finite dimensional
distribution system the following problems are essential:

(i) find conditions on the system under which there exists a random
field inducing the system

(ii) find the conditions guarantying its uniqueness
(iii) give an appropriate representation for the distribution systems.

The systems mentioned in Introduction are characterized by the choice of
classes of finite subsets, appropriate boundary functions, and consistency
conditions.

1.3 Precifications

Let F be a subset of F , and let ϕ be a map ϕ : F → ∪I∈FBI , such that
the imagee of each set V ∈ F is a subset of BV , ϕ(V ) ⊂ BV . As a fi-
nite dimensional probability distribution system Q(F, ϕ) we understand the
aggregation

{qz ∈ DV : V ∈ F, z ∈ ϕ(V )}.

Such a system Q(F, ϕ) we call precification1, or more precisely (F, ϕ)-preci-
fication. The sets from F as well as the corresponding boundary conditions
will be called acceptable.
Obviously, there is a largest precification (with F = F and ϕ(Λ) = BΛ for
any Λ ∈ F ) which will be called total.

1The term precification (≈ pre+specification) is introduced for brevity in considering
arbitrary systems of distributions without any consistency conditions.
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Each random field induces various kinds of precifications.

We say that a precification is prescribing if there exists random fields which
induce it, and determining if it is prescribing and the related random field
is unique.

We are interested not only in the problems of existence and uniqueness of a
random field with given system of finite dimensional distributions, but also
in its convenient representation in reasonable terms. To understand better
what we mean, let us recall the characterization of conditional probabili-
ties of Markov chains by transition matrices, the Gibbs representation (in
terms of potential) of specifications, spectral representation for correlation
functions of stationary random processes and so on.

Let P = {Ps, s ∈ S} be a system of probability distributions on Xs.
We say that the system P is compatible with a precification Q(F, ϕ) if for
any finite configuration x and for all pairs of points s, t ∈ V = d(x) the
following relation holds on Q(F, ϕ)

qxs(xV \s)Ps(xs) = qxt(xV \t))Pt(xt), (2)

i.e. the product of the form qxs(xd(x)\s))Ps(xs) does not depend on the choice
of points in the domain of a finite configuration.

1.4 Cyclic functions

Now we introduce certain functions related to a precification which plays an
important role in the further considerations.
Let x, u, y, v ∈ X (S) be four n-configurations which domains satisfy the
condition d(y) 6= d(x) = d(u) 6= d(v), and z be a boundary condition related
to d(x) ∪ d(y) ∪ d(v). Consider the real function (referred as α-functions)
related to a given precification:

αz(x, y, u, v) = qzx(y)qzy(u)qzu(v)qzv(x) (3)

which obviously is invariant under the cyclic permutations of arguments, i.e.

αz(x, y, u, v) = αz(y, u, v, x).

An α-function αz is called symmetric if it is invariant under a transposition
of similar (with coinciding domains) arguments, i.e.

αz(x, y, u, v) = αz(x, v, u, y). (4)

If d(y) = d(v) we call such function n-cyclic related to the considering pre-
cification. The function αz is called cyclic if it is n-cyclic for any positive
integer n.
We shall see later that symmetric functions appear as consistency condi-
tions on precifications and play a crucial role in the problem of description
of random fields.
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1.5 Gibbs precification

Recall that a Gibbs measure in a finite volume (limited to some Λ ∈ F)
is given by the distribution (for simplicity we ignore the dependence on
physical parameters)

qΛ(x) = Ξ−1 exp(HΛ(x)),

where x ∈ XΛ, HΛ(x) is a Hamiltonian (that is the energy of the system,
assumed to have an additive form with respect to a potential Φ of interactions
(for details see 2.3), and the partition function (normalizing factor)

Ξ =
∑
u∈XΛ

exp(HΛ(u)).

Obviously, the set of all such finite dimensional distributions is a precification
without boundary conditions and all finite subsets acceptable.

Particularly, in the case of pair potential the Hamiltonian has the form

HΛ(x) =
∑
s,t∈Λ

Φ(xt, xs).

Usually, the definition of a limiting Gibbs measure in an infinite volume
requires the involvement of so called thermodynamic limit (when Λ ↑ S in
some sense).

2 Systems of probability distributions

In this section we discuss various classes of precifications with special con-
sistency conditions.

2.1 Kolmogorov systems

Classical Kolmogorov system can be described as a precification correspond-
ing to the system of all finite subsets without boundary conditions. Thus,
F = F , and ϕ(Λ) = ∅, for all finite Λ.
The consistency condition is the following

(pΛ)I = pI , (5)

where I ⊂ Λ, pV = qV ∈ DV and (pΛ)I here and henceforth denotes

(pΛ)I(x) =
∑

u∈XΛ\I

pΛ(xu).

Being too general, this system does not have a convenient representation
and therefore has largely the theoretical significance.
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A classical result claims that Kolmogorov system is a determining precifica-
tion (see e.g. [15]).

Using Kolmogorov system one can introduce the notion of conditional dis-
tribution of a random field (see [7]). Let V ∈ F and Λn be an increasing
sequence of finite subsets, V ∩ Λi = ∅, i = 1, 2, . . . with ∪iΛi = S \ V . As-
sume a boundary condition z is related to the set S \ V , and let zn = zΛn .
Consider the following sequence of ratios (forming a martingal)

qzn(x) =
pV ∪Λn(xzn)

pΛn(zn)
, n = 1, 2, . . . , x ∈ XV . (6)

It is known that a.s. there exists the limit

qz(x) = lim
n→∞

qzn(x)

which is called the conditional distribution of the random field (by Do-
brushin).

Now we return to the construction of random fields associated with precifi-
cations suggested in the previous section.

Proposition 1 Let Q = Q(F, ϕ) be a precification with F = F and bound-
ary conditions BΛ related to any Λ ∈ F . Then the precification Q is pre-
scribing, that is there exists a random field constructed by means of Q.

Proof. Let Λn, n ∈ N, be an increasing sequence of finite subsets of S such
that ∪n∈NΛn = S and zn be a sequence of boundary functions from BΛn .
For all I ∈ F , by the diagonal method (applying the finiteness of X) one
can chose a subsequence (for simplicity we do not change the notations) for
which the following limit exists

lim
n→∞

(qznΛn
)I(x) = pI(x).

It is easy to verify that the system {pI} satisfies the Kolmogorov consistency
condition, and then a random field is uniquely determined. �

Particularly, a limiting Gibbs measure on XS can be obtained by the con-
struction mentioned in Proposition 1. However, there is no an explicit rela-
tionship bewwen the constructed Gibbs random field and the initial precifica-
tion. Nevertheless in Statistical mechanics a powerful method of correlation
functions is developed which is devoid the mentioned defect and allows the
complete investigation of the properties of the Gibbs field (see e.g. [18]).
Through the efforts of Dobrushin, Lanford and Ruelle (see [17]) the difficul-
ties in main part managed to get around and the problem was reduced to
the investigation of finite dimensional distribution systems.
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2.2 Dobrushin systems (specifications)

Dobrushin systems have been proposed primarily to construct the more gen-
eral Gibbs measures with given Hamiltonian in infinite volumes.

We present here the systems (specifications) of Dobrushin. The Dobrushin
approach to the problems of existence and uniqueness of a random field with
given specification can be found in the notable survey [17], and in the works
of Dobrushin cited there (see also the complete collection of Dobrushin’s
papers at the site [20]).

We consider a Dobrushin system D as a precification with F = F and
ϕ(Λ) = {z ∈ BΛ : c(z) = Λ} for any Λ ∈ F endowed with the following
consistency relation (Dobrushin condition)

qz(xy) = qzx(y)
∑
u∈XJ

qz(xu), (7)

for x ∈ XI , y ∈ XJ , I ∩ J = ∅, I, J ∈ Fc, and any z with c(z) = I ∪ J .
The term used now for a such system is specification.
Each specification D contains a subsystem Dn (called n-point subspecifica-
tion) which elements are defined only on XΛ with |Λ| = n, n ∈ N.

The following result shows when a specification is prescribing.

Theorem 1 (Dobrushin, [7]) Let D be a quasi-local specification. Then
there exists a random field which conditional probability distribution system
a.s. coincides with D.

Dobrushin also gave a condition under which the system is determining.

Theorem 2 (Dobrushin, [9]) Let D be a quasi-local specification.The re-
lated random field to be unique the following condition on one-point quasi-
local specification is sufficient

sup
s∈S

∑
t∈S\s

sup
u,v

ρt,s(q
u, qv) < 1, (8)

where the second sup is taken over all u, v with d(u) = d(v) = S \ s, and
u(r) = v(r), r 6= s, t.

2.3 Gibbs systems (specifications)

We introduce here the notion of Gibbs specification essential for the Do-
brushin definition of a Gibbs random field with a given potential.
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A real function Φ on configurations X (S) is called interaction potential.
Potential Φ is called convergent if the series∑

J∈F(S\s)

Φ(xzJ)

converges for all s ∈ S, x ∈ Xs, z ∈ XS\s. A potential Φ is called uniformly
convergent if the convergence is uniform with respect to z.
For any convergent potential a specification G = G(Φ) can be constructed
using the following Gibbs formulae for x ∈ XΛ, Λ ∈ F , z ∈ XS\Λ

qz(x) =
exp(Hz(x))∑

u∈XΛ

exp(Hz(u))
, (9)

where
Hz(y) =

∑
∅6=I⊂Λ

∑
J⊂F(S\Λ)

Φ(yIzJ). (10)

Such a specification is called Gibbsian (with potential Φ).
Remark, that when some z ∈ XS is fixed the elements of Gibssian specifica-
tions {qzS\ΛΛ } determine a Gibbs precification (see 1.5), and then a limiting
Gibbs random field with given potential may be constructed.
According to Dobrushin, a random field is called Gibbsian with given poten-
tial if its conditional distributions a.s. coincide with the Gibbs specification
with the same potential.
Note that a set of Gibbs random fields with given potential is a simplex in
an appropriate Banach space of random fields ([9]), and the set of limiting
random fields coincides with the set of extreme points of this simplex. When
a Gibbse random field with given potential is unique, it coincides with the
limiting Gibbse random field with the same potential.

A consequence of Theorem 1 claims that the uniform convergence of
potential implies the quasi-locality of the Gibbs specification and hence the
existing of a Gibbs random field. It may be added that the uniqueness
condition (Theorem 2) can be reformulated in terms of potential too.
There are a lot of works devoted to Gibbs representations of specifications,
see e.g. [2], [16], [19].
Note that according to a theorem of Kozlov, [16], any quasi-local (Dobrushin)
specification is Gibbsian.

2.4 1-specifications

As noted in the introduction, there is a discrepancy between the conditions
of existence and uniqueness formulated by Dobrushin, the first of which is
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imposed on the entire specification, while the second only to the one-point
subsystem. R. Dobrushin himself in [7] and [9] posed the problem to deduce
both results from the conditions on one-point subspecification only.
This problem was solved many years later in the papers [3], [4].
Now we present the main results of these works in our terms.
Consider a precification corresponding to the parameters F1 = F1, and
ϕ1(Λ) = {z ∈ BΛ, c(z) = Λ},Λ ∈ F in assuming all cyclic functions αz

defined in (3) are symmetric.
Thus, as it was in the original form, the consistency condition is

qzx(y)qzy(u)qzu(v)qzv(x) = qzx(v)qzv(u)qzu(y)qzy(x) (11)

for all functions x, u, y, v such that d(x) = d(u), d(y) = d(v) ∈ F1, and z is
a boundary function from ϕ1(d(x) ∪ d(y)).
The systemR1 with just described precification and related symmetric cyclic
functions concerned as a consistency condition is called 1-specification.

Theorem 3 (Dashyan-Nahapetian, [3], [4] ) Any one-point subspecifi-
cation D1 of a specification D is a 1-specification. Conversely, each 1-
specification is the one-point subspecification of a unique specification.

Remark that as a consequence of this theorem we obtain that the quasi-
locality of the one-point subspecification implies the quasi-locality of entire
specification.
Another immediate corollary is that any 1-specification is prescribing.

Definition 1 A random field P is called Gibbs random field if
(i) PΛ(y) > 0 for any Λ ∈ F and y ∈ XΛ

(ii) the limits

qz(x) = lim
Λ↑S\s

Ps∪Λ(xzΛ)

PΛ(zΛ)
, s ∈ S, x ∈ Xs, z ∈ XS\s

exist, are strictly positive, and the convergence is uniform with respect to z.

If P is a Gibbs random field, then the system {qz} is a 1-specification and
then by Theorem 3 a canonical specification can be restored uniquely.

Theorem 4 ([5]) The canonical specification of a Gibbs random field is
Gibbsian with some potential. Conversely, any random field related to a
determining Gibssian specification is Gibssian.

This fact shows that an inner definition (that is without involvement of the
notion of potential) of Gibbs random field can be given.
At the same time it gives a useful representation for conditional distributions
of Gibbs random fields.
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Remark, at the end, that one can consider the more general systems of
n-point specifications Rn with the consistency conditions in terms of the
cyclic functions, which have a certain theoretical interest. We reserve these
questions for the further studies.

2.5 One-point finite conditional distribution systems

In the paper [6] the systems of one-point probability distributions and bound-
ary functions with finite domains were considered.
Namely, the system L corresponds to the precification with F1 = F1(S),
boundary conditions related to a set Λ ∈ F1 as {z ∈ BΛ : |d(z)| < ∞}, and
as a consistency condition the following relation assumed for any functions
x, y with |d(x)| = |d(y)| = 1, d(x)∩d(y) = ∅, and boundary functions z with
d(z) ∈ F , d(x) ∪ d(y) ⊂ c(z)

qz(x)qzx(y) = qz(y)qzy(x). (12)

The main result is the following.

Theorem 5 (Dalalyan, Nahapetian) The system L is determining if and
only if all related 1-cyclic functions with one-point boundary conditions are
symmetric.

Note that the finite dimensional distributions of the related random field has
an explicit form (a representation).
Let Λ = {s1, s2, . . . , sn}, n ∈ N. Then

PΛ(x) = Ps1(xs1)q
xs1
s2 (xs2) · · · qxs1xs2 ···xsn−1

sn (xsn) (13)

where x ∈ XΛ and

Ps(x) =
qy(x)

qx(y)

(∑
u∈Xs

qy(u)

qu(y)

)−1

, x ∈ Xs, y ∈ X t. (14)

2.6 Palm systems

In this section we present a variant of a system of distributions which in
particular cases associated with so called called Palm processes.

Fix b ∈ X (S), such that B = d(b) 6= S. As a set FB of acceptable subsets
we take the set of all V ∈ F , such that V ∩B = ∅.
For any V ∈ FB as acceptable boundary conditions the functions from z ∈
BV such that zB = b.
This precification with the consistency condition

qb(xy) = qb(x)qbx(y), x ∈ XI , y ∈ XJ , I ∪ J ⊂ S \B. (15)

is called Palm system and is denoted by Pb.
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Theorem 6 Each Palm system uniquely determines a random field.

Proof. It is obvious that the system {qbΛ,Λ ∈ FB} is consistent in the
Kolmogorov sense and then being a determining system on S \B is related
to a unique random field Pb on XS\B.
Our immediate goal is to extent this measure on the entire XS.
At first define a measure Pb on XB:

Pb(x) =

{
1, if x = b
0, if x 6= b.

The measure Pb is already defined on XS\B. It remains the case when
configurations are taken from XV where for V ∩B 6= ∅.
Represent such a configuration x as a concatenation of two configurations,
x = uv, where d(v) = V \B, and d(u) = B ∩ V . Then we define

Pb(x) = Pb(uv) =

{
qb(v), if u = bB∩V

0, if u 6= bB∩V .

Verify that it is a probability distribution:∑
x∈V

Pb(x) =
∑
v∈V \B

∑
u∈B∩V

Pb(vu) =
∑
v∈V \B

Pb(vbB∩V ) =
∑
v∈V \B

qb(v) = 1.

Verify now that the obtained system is consistent by Kolmogorov.
Let I ⊂ V, x ∈ XI . Then∑

y∈V \I

Pb(xy) =
∑

v∈XV \(B∪I)

∑
u∈X(V \I)∩B

Pb(xI∩BxI\Buv) =

∑
v∈XV \(B∪I)

Pb(bI∩Bb(V \ I) ∩BxI\Bv) =
∑

v∈XV \(B∪I)

Pb(bV ∩BxI\Bv) =

∑
v∈XV \(B∪I)

qb(xI\Bv) = qb(xI\B) = Pb(bI∩BxI\B) = Pb(x).

�

In the theory of stochastic processes such a random processe in the case
when |B| = 1 are called Palm process (see e.g. [14], [1]), and in the case,
when |B| = n, n > 1 is called Palm process of order n.

Now we present Palm systems of a special kind which was used by Dobrushin
in his construction of limiting Gibbs random fields.
Let b ∈ X (S) be a configuration such that Λ = c(b) ∈ F , and let qb = qbΛ be
a probability distribution on XΛ. For any I ⊂ Λ define the distribution qbI
on XI as qbI(x) =

∑
u∈Λ\I q

b(xu).

It is easy to verify that this system satisfies the condition (6) and then by
Theorem 6 uniquely determines a random field which is called by Dobrushin
a random field in the finite volume with fixed boundary condition.
This kind of random fields was applied for the construction of limiting Gibbs
random fields (see [8]).
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3 General systems

Now we introduce a general system G, corresponding to the total precifica-
tion with the following consistency condition

qz(xy) = qz(x)qzx(y), (16)

where x, y are any two finite configurations, d(x)∩d(y) = ∅, and any bound-
ary function z related to d(x) ∪ d(y) .

Let us show that the finite dimensional systems considered in the previous
section are sub-precifications of the general one.

At first we note that if the empty boundary conditions are acceptable, then
the system contains the Kolmogorov system {pΛ = qΛ,Λ ∈ F}.
Indeed, in this case we have for I ⊂ Λ and for any x, y with d(x) = I, and
d(y) = Λ \ I

p(xy) = p(x)qx(y),

and summarizing both sides of this equality over all y ∈ XΛ\I we obtain the
Kolmogorov consistency condition (5) and then the existence and uniqueness
of a random field. Remark also that all another elements of the system are
generated by the field.

Taking into account the mentioned case we assume ϕ is such that d(z) 6= ∅
in what follows.

Consider now Dobrushin specifications.

Proposition 2 Suppose a subsystem E of G is specified only by the choice
of boundary conditions z being such that c(z) = Λ for Λ ∈ F . Then the
system E is a Dobrushin specification.

Proof. It is sufficient to show that the consistency condition (7) follows
from the condition (16).
Indeed, ∑

y∈XJ

qz(xy) =
∑
y∈XJ

qz(x)qzx(y) = qz(x)
∑
y∈XJ

qzx(y) = qz(x).

Thus,

qz(xy) = qz(x)qzx(y) = qzx(y)
∑
u∈XJ

qz(xu).

�

Taking into account Theorem 3 we obtain as a corollary that any 1-specifications
R1 is a subsistem of G too.
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Evidently, any one-point conditional distribution system L (which by def-
inition has deal with only the boundary conditions with finite domains) is
also a subsystem of G.
At last it is easy to understand that the Palm systems also are subsystems
of a general one.

We return to the general systems.
Let us show now that the main property of cyclic functions (symmetricity)
related to the system G is satisfied automatically.

Proposition 3 All functions αz defined in Subsection 3 by the elements of
a general system G are symmetric.

Proof. We obtain from the relation (16) in the notations of Subsection 3

αz(x, y, u, v) = qzx(y)qzy(u)qzu(v)qzv(x) =
qz(xy)qz(yu)qz(uv)qz(vx)

qz(x)qz(y)qz(u)qz(v)
=

qz(xv)qz(vu)qz(uy)qz(yx)

qz(x)qz(v)qz(u)qz(y)
= qzx(v)qzv(u)qzu(y)qzy(x) = αz(x, v, u, y).

�

Proposition 4 Let P = {Ps, s ∈ S} be a system of probability distributions
on X compatible with the system G. Then the system of finite dimensional
distributions P = {pΛ,Λ ∈ F} defined as

pΛ(x) = qxs(xΛ\s)Ps(x(s)), s ∈ Λ

is a determining system consistent in Kolmogorov sense.

Proof. We have for any s ∈ I

(pΛ)I(x) =
∑

u∈XΛ\I

pΛ(xu) =
∑

u∈XΛ\I

pΛ(xsxI\su) =
∑

u∈XΛ\I

qxs(xI\su)Ps(x(s)).

Applying 16 we obtain

(pΛ)I(x) =
∑

u∈XΛ\I

qxs(xI\s)q
xI
Λ\t(u)Ps(x(s)) = qxs(xI\s)Ps(x(s)) = pI(x).

�

In some cases the existence of compatible systems can be guaranteed.
We formulate this fact as a theorem, the proof of which in substantial part
is borrowed from the book by the second author and S. Dachian, preparing
for publication.
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Theorem 7 Let G be a general system such that all 1-cyclic functions with
one-point boundary conditions are symmetric. Then the system of distribu-
tions P = {Ps, s ∈ S} with

Ps(x) =
qy(x)

qx(y)

(∑
u∈Xs

qy(u)

qu(y)

)−1

, x ∈ Xs, y ∈ X t (17)

is compatible with respect to G, that is the system G is determining.

Proof. Firstly we have to show the definition (17) is correct, that is does
not depend on the choice of a configuration y. We have to show that for any
v ∈ Xr, r ∈ S

qv(x)

qx(v)

(∑
u∈Xs

qv(u)

qu(v)

)−1

=
qy(x)

qx(y)

(∑
u∈Xs

qy(u)

qu(y)

)−1

. (18)

Let us show for any quadruple x, y, u, v, where x, u ∈ Xs, y ∈ X t, v ∈ Xr

that the functions α are symmetric α(v, x, y, u) = α(v, u, y, x), that is

qv(xs)qx
s

(y)qy(u)qu(v) = qv(u)qu(y)qy(xs)qx
s

(v) (19)

If t = s this relation means that α is a 1-cyclic symmetric function, which
is the requirement of the theorem.
If the contrary, t 6= s, then we have using (16)

qv(x)qx(y)qy(u)qu(v) =
qv(xy)

qvx(y)
· q

x(yv)

qxy(v)
· q

y(uv)

qyu(v)
· q

u(vy)

quv(y)
=

qv(uy)

qvu(y)
· q

u(yv)

quy(v)
· q

y(xv)

qyx(v)
· q

x(vy)

qxv(y)
= qv(u)qu(y)qy(x)qx(v)

since
qv(xy)

qv(uy)
=
qvy(x)qv(y)

qvy(u)qv(y)
=
qy(xv)

qy(uv)
.

By summing over both parts of the equality 19 with respect to u∑
u∈Xs

qv(x)qy(u)

qx(v)qu(y)
=
∑
u∈X

qy(x)qv(u)

qx(y)qu(v)

we obtain the relation equivalent to (18) which means that the system P is
well defined.
Now we show that this system is compatible with the system G.
Let x be a finite configuration with the domain d(x) = Λ = V ∪ {s} ∪ {t}.
At first let us verify the compatibility condition (2) for the case V = ∅ i.e.
for Λ = {s, t}:

qxs(xt)Ps(xs) = qxt(xs)Pt(xt). (20)
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In other terms we have to prove for any x ∈ Xs and y ∈ X t the relation

qx(y)Ps(x) = qy(x)Pt(y) (21)

Using the relation (19) which establishes the symmetricity of the functions
α we obtain for x, u ∈ Xs and y, v ∈ X t

qy(x)qx(v)qv(u)

qv(x)
=
qx(y)qy(u)qu(v)

qu(y)

Using this equality, we get

qy(x)
∑
v∈Xt

qx(v)

qv(x)
=
∑
v∈Xt

qy(x)qx(v)

qv(x)
=
∑
u∈Xs

∑
v∈Xt

qy(x)qx(v)qv(u)

qv(x)
=

∑
u∈Xs

∑
v∈Xt

qx(y)qy(u)qu(v)

qu(y)
=
∑
u∈Xs

qx(y)qy(u)

qu(y)
= qx(y)

∑
u∈Xs

qy(u)

qu(y)

Then

qy(x)

(∑
u∈Xs

qy(u)

qu(y)

)−1

= qx(y)

(∑
v∈Xt

qx(v)

qv(x)

)−1

,

and at last

qx(y)Ps(x) = qx(y)
qy(x)

qx(y)

(∑
u∈Xs

qy(u)

qu(y)

)−1

=

qy(x)
qx(y)

qy(x)

(∑
v∈Xt

qx(v)

qv(x)

)−1

= qy(x)Pt(y).

Now, assume that |Λ| > 2.
Combining 20 with the general consistency condition (16) we obtain

qxs(xΛ\s)Ps(xs) = qxs(xV xt)Ps(xs) = qxsxt(xV )qxs(xt)Ps(xs) =

qxsxt(xV )qxt(xs)Pt(xt) = qxt(xV xs)Pt(xt) = qxt(xΛ\t))Pt(xt).

�
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